PCRS 2025

19

200

MARCH

PACIFIC WAVES - EXPLORING SCIENTIFIC FRONTIERS IN AN EVOLVING SOCIETY

NO AN WELLS'

Genetic Testing Panels for IVF Failure: The Answer We've Been Waiting For?

Meaghan Doyle, MS, LCGC (she/her) Licensed Certified Genetic Counselor

Founder, DNAide Genetic Counselling

Disclosures

• Nothing to Disclose

Needs Assessment Statement and Expected Learning Outcomes

- At the end of this session participants should be able to:
 - summarize the nonsyndromic phenotypes currently associated with single gene causes of IVF failure
 - evaluate the benefits, risks, and limitations of clinical genetic testing for genes related to nonsyndromic causes of IVF failure
 - argue for the importance of pre- and post-test genetic counseling when considering genetic testing for nonsyndromic causes of IVF failure

Needs Assessment Statement and Expected Learning Outcomes

- At the end of this session participants should be able to:
 - summarize the nonsyndromic phenotypes currently associated with single gene causes of IVF failure
 - evaluate the benefits, risks, and limitations of clinical genetic testing for genes related to nonsyndromic causes of IVF failure

argue for the importance of pre- and post-test genetic counseling when considering genetic testing for nonsyndromic causes of IVF failure

Outline

- Current landscape of genetic testing for infertility
- Introduction to gene panels
- Examples of gene discovery
- Clinical utility of gene panels for IVF failure
- Genetic Counseling
- Q&A

Language

- Sperm-factor
- Egg-factor
- People with testes
- People with ovaries
- People with a uterus/person carrying a pregnancy
- Language used in the literature
- Male/female

Current Landscape

Genetic Testing for Infertility

Standard Genetic Testing

Sperm-Factor

- Karyotype
- CFTR
- Y Chromosome Microdeletion

Egg-factor

- Karyotype
- *FMR1*

Standard Genetic Testing

Sperm-Factor

- Karyotype
- CFTR
- Y Chromosome Microdeletion

Carrier screening is designed to assess risk to future children, not diagnose patients

Egg-factor

- Karyotype
- FMR1

JOURNAL ARTICLE

A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development @

105 genes with at least moderate evidence of a relationship with female infertility/DSDs

What are gene panels?

- Genetic test
- Analyze many genes at one time related to indication for testing
- May be predesigned by the testing laboratory
- Customization options may be available

What are gene panels?

- Genetic test
- Analyze many genes at one time related to indication for testing
- May be predesigned by the testing laboratory
- Customization options may be available

Benefits of gene panels

- Typically same cost and turnaround time of testing a single gene
- Helpful when phenotype overlaps with many genetic etiologies

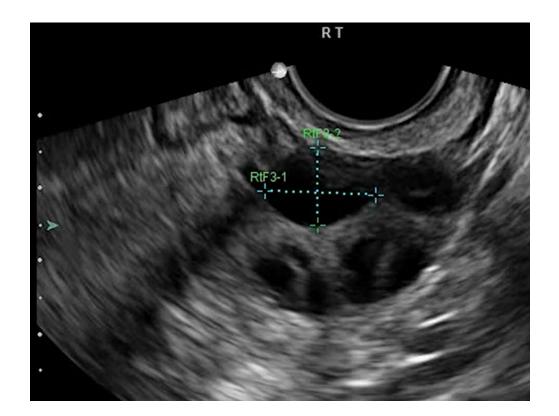
Downsides of gene panels (for IVF failure)

• More on this later...

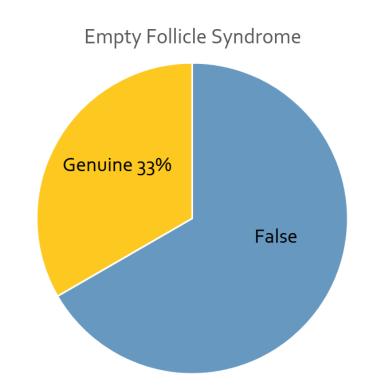
Gene Discovery

Infertility and IVF Failure

Empty Follicle Syndrome



Follicles and COCs


- Follicles: fluid-filled structures in the ovaries where eggs develop
- COCs: Cumulus-oocyte complexes
 - Extracted from follicular fluid during egg retrieval

Empty Follicle Syndrome (EFS)

- False EFS: failure to take trigger medication correctly
- Genuine EFS:
 - Dysfunctional folliculogenesis
 - Ovarian aging
 - Genetic factors

Genuine Empty Follicle Syndrome

REPORT

A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility

Tailai Chen,^{1,2,3,7} Yuehong Bian,^{1,2,3,7} Xiaoman Liu,^{1,2,3} Shigang Zhao,^{1,2,3} Keliang Wu,^{1,2,3} Lei Yan,^{1,2,3} Mei Li,^{1,2,3} Zhenglin Yang,⁶ Hongbin Liu,^{1,2,3} Han Zhao,^{1,2,3,*} and Zi-Jiang Chen^{1,2,3,4,5,*}

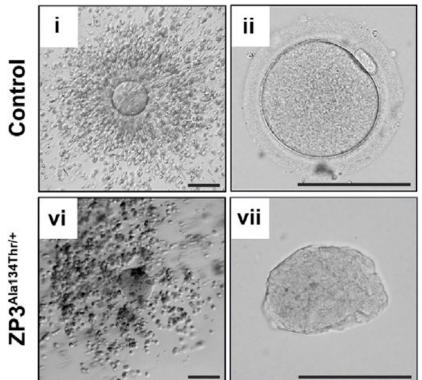
- Large family
- Multiple females with primary infertility
- Variant in ZP3 identified as the cause

A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility

Tailai Chen,^{1,2,3,7} Yuehong Bian,^{1,2,3,7} Xiaoman Liu,^{1,2,3} Shigang Zhao,^{1,2,3} Keliang Wu,^{1,2,3} Lei Yan,^{1,2,3} Mei Li,^{1,2,3} Zhenglin Yang,⁶ Hongbin Liu,^{1,2,3} Han Zhao,^{1,2,3,*} and Zi-Jiang Chen^{1,2,3,4,5,*}

Proband III-10

- 28yo
- 8 years of primary infertility
- Normal infertility assessment
- IVF #1: 11 follicles >14mm in diameter, normal estradiol level, 11 COCs retrieved
- 9 of 11 had no oocyte

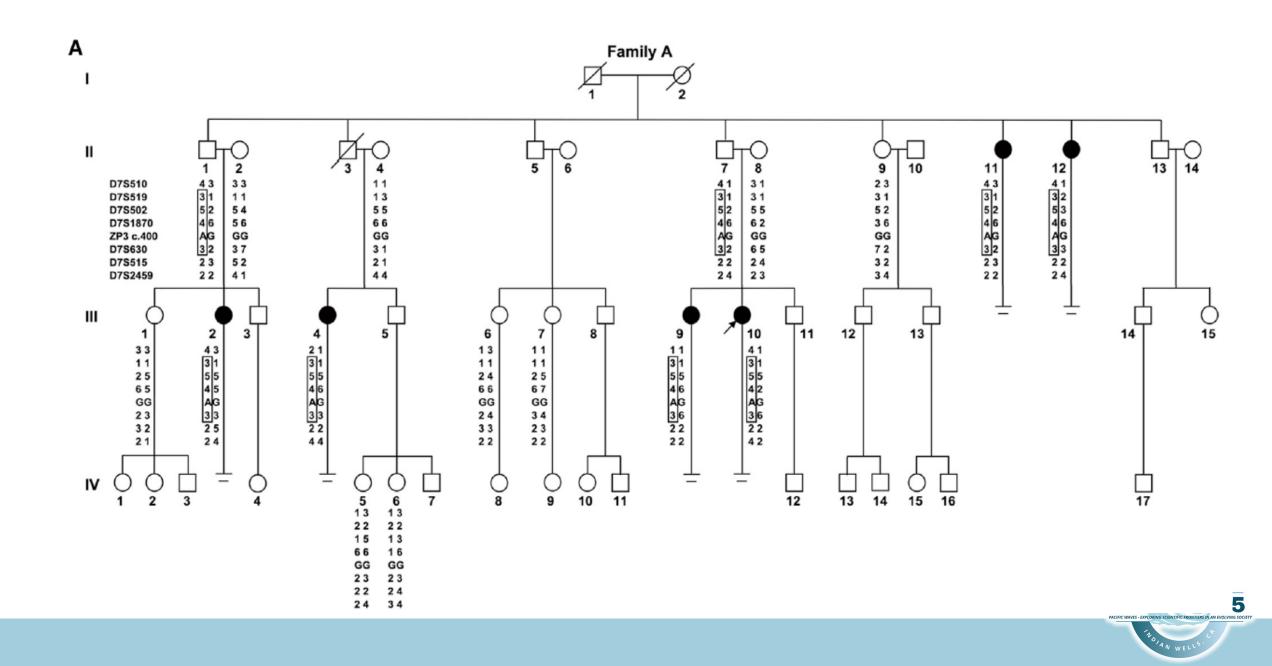


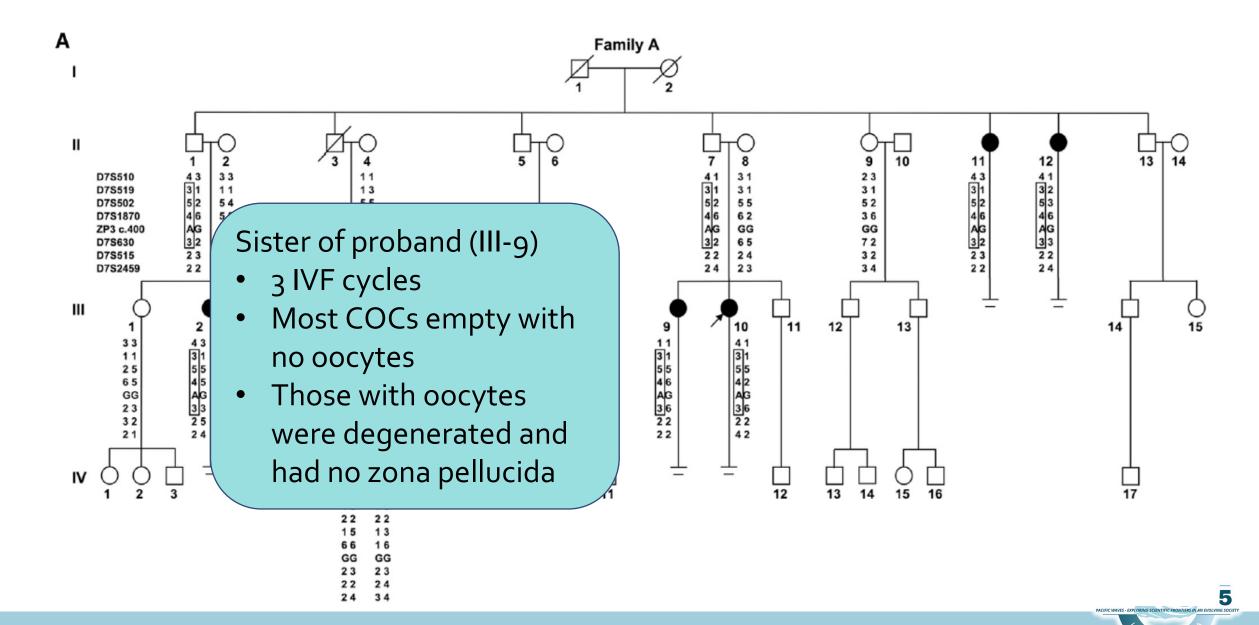
A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility

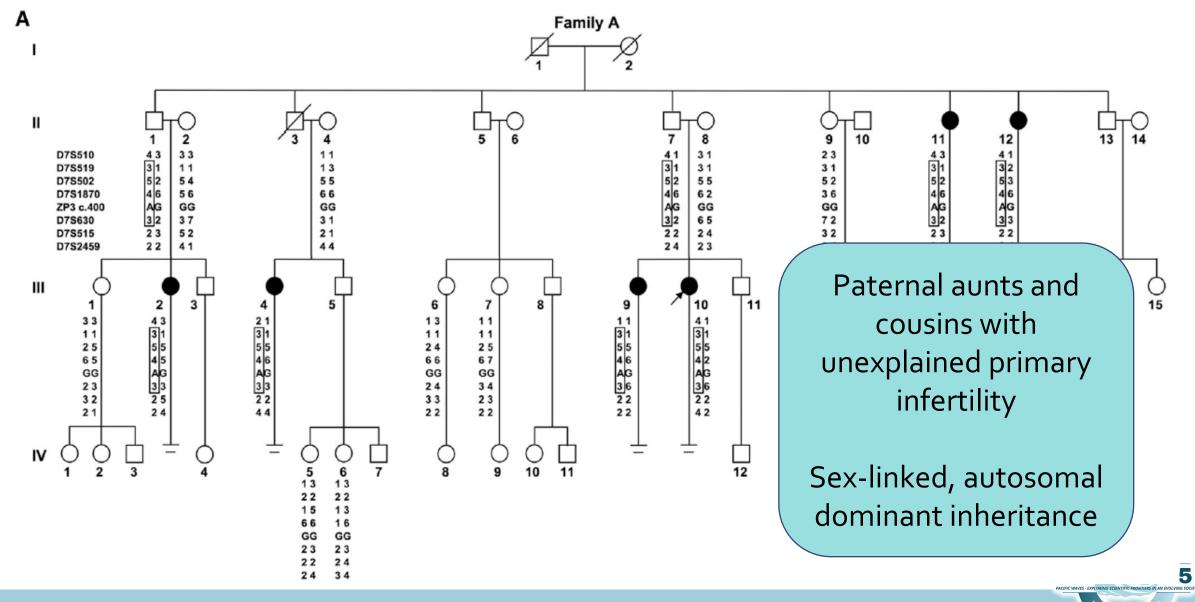
Tailai Chen,^{1,2,3,7} Yuehong Bian,^{1,2,3,7} Xiaoman Liu,^{1,2,3} Shigang Zhac Mei Li,^{1,2,3} Zhenglin Yang,⁶ Hongbin Liu,^{1,2,3} Han Zhao,^{1,2,3,*} and Zi

Proband III-10

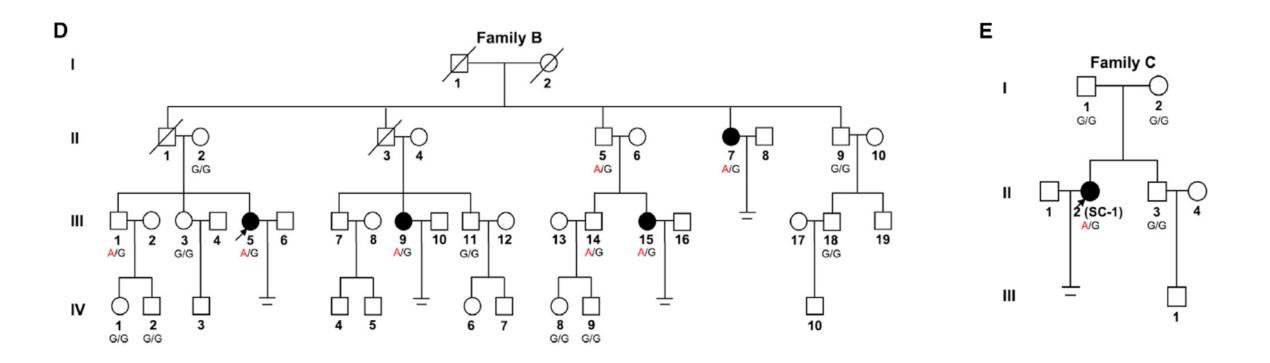
- IVF #2: 6 follicles >14 mm, normal estradiol
 - 4 empty follicles
 - 2 COCs retrieved, both containing degenerated oocytes lacking a zona pellucida


A Recurrent Missense Mutation in *ZP3* Causes Empty Follicle Syndrome and Female Infertility


Tailai Chen,^{1,2,3,7} Yuehong Bian,^{1,2,3,7} Xiaoman Liu,^{1,2,3} Shigang Zhao,^{1,2,3} Keliang Wu,^{1,2,3} Lei Yan,^{1,2,3} Mei Li,^{1,2,3} Zhenglin Yang,⁶ Hongbin Liu,^{1,2,3} Han Zhao,^{1,2,3,*} and Zi-Jiang Chen^{1,2,3,4,5,*}


Proband III-10

- IVF #3: 7 follicles >14mm, normal estradiol
 - 7 COCs retrieved, all empty

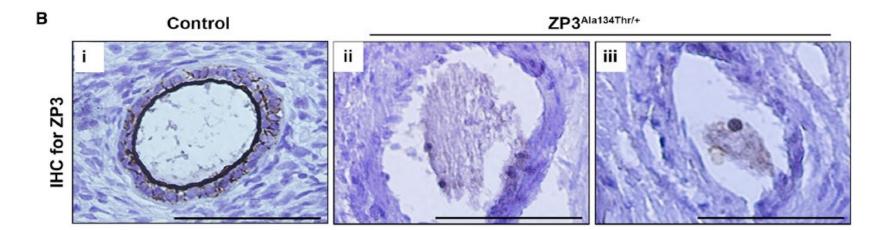


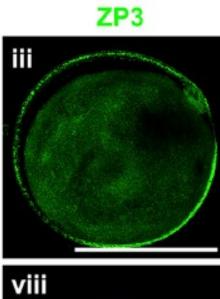
Ē

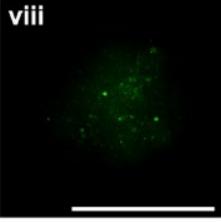
ZP3 sequencing subsequently identified the same variant in 2 other families with the same phenotype

c.400G>A

ZP3


- Encodes ZP3 glycoprotein, a component of human zona pellucida (ZP)
 - Only expressed in the oocyte
- ZP is a thick extracellular coat surrounding mammalian oocytes
- ZP functions include:
 - Recognizing gametes
 - Supporting oocyte-follicle cell communication
 - Protecting the oocyte




ZP3

Ļ

- Ovarian biopsy via laparoscopy prior to ovulation
 - Egg donor as control

ZP3 Phenotype

- Genuine empty follicle syndrome
- Oocyte death
- Abnormal zona pellucida

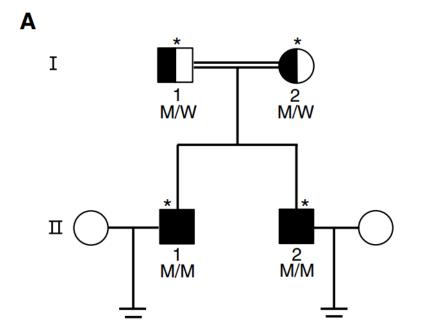
Genetic Cause Identified

- Significant family history of the same (rare) phenotype
- Multiple rounds of IVF with the same phenotype, not improving with protocol changes

Sperm-factor gene

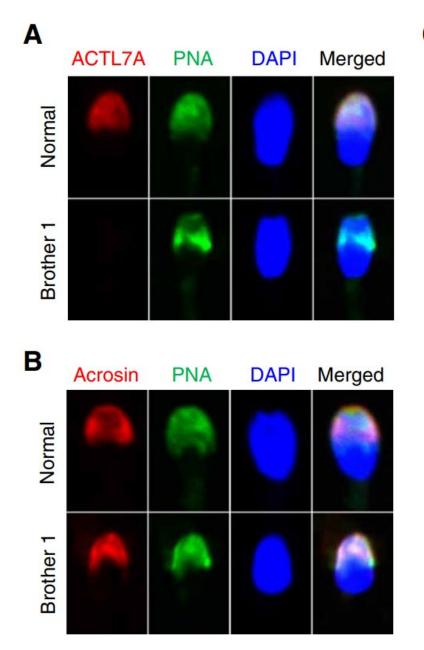
With possible treatment

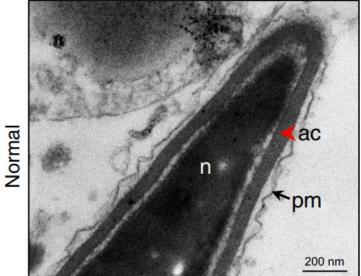
Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor inducing early embryonic arrest

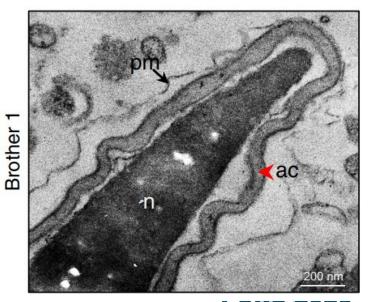

Aijie Xin^{1,2}*, Ronggui Qu¹*, Guowu Chen¹*, Ling Zhang^{1,3,4}*, Junling Chen¹, Chengqiu Tao³, Jing Fu¹, Jianan Tang², Yanfei Ru², Ying Chen¹, Xiandong Peng¹, Huijuan Shi^{2†}, Feng Zhang^{1,2,3,4,5†}, Xiaoxi Sun^{1,4,6†}

- Consanguineous family
- Two brothers with unexplained infertility
- Normal semen analysis
- Insemination with conventional IVF resulted in no fertilized oocytes
- ICSI was successful but all embryos arrested at the 4 or 5 cell stage
- Both had healthy live births with donor sperm

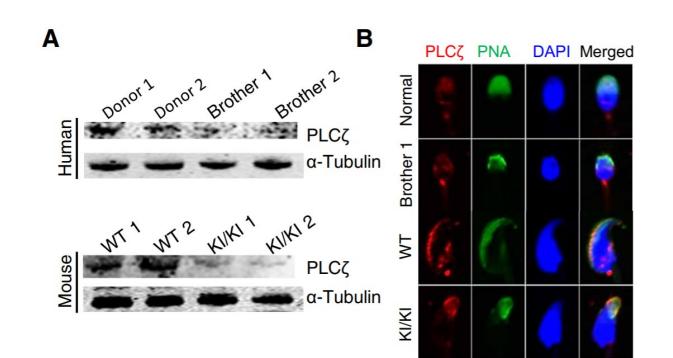
Genetic Evaluation


- Whole exome sequencing performed on both brothers and their parents
- Novel homozygous *ACTL7A* variant identified




ACTL7A

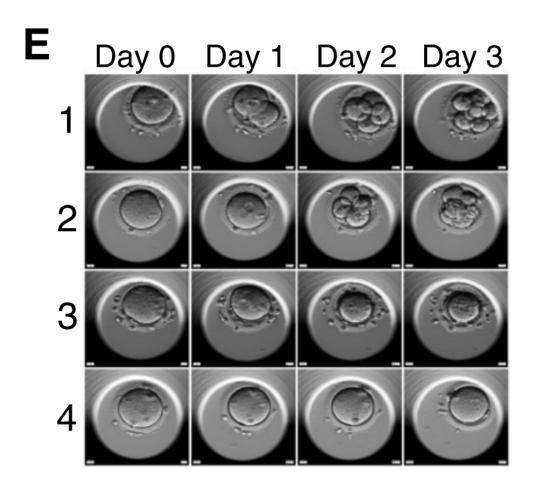
- ACTL7A is localized to the acrosome
- Homozygous ACTL7A variants may cause acrosomal defects in human sperm
- ACTL7A male knockout mice were infertile



ACTFIC WAVES - EXPLORING SCIENTIFIC FRONTIERS IN AN EVOLVING SOCIET

Mouse Models

- ACTL7A mouse knockouts were infertile but ICSI did not rescue fertilization
- PLCζ was lacking in mice and human sperm
 - Oocyte activation/fertilization
 - Initiation of embryonic development


Treatment option?

- Artificial oocyte activation with strontium chloride
 - Viable embryos in mice
- Mouse offspring were fertile
 - No significant differences vs. control group

Treatment option?

- Brother 2 attempted a cycle with this treatment
- Two good quality day 3 embryos
- Implantation unsuccessful 39yo partner

ACTL7A

- Unexplained infertility prior to IVF
- Fertilization failure with conventional IVF
- Successful fertilization with ICSI
- Early embryonic arrest
- Possible treatment with artificial oocyte activation

Genetic Cause Identified

• Consanguinity

Ę

- Two relatives with identical phenotypes
- Protocol issue not suspected

TUBB8

One gene, many phenotypes

Published in final edited form as:

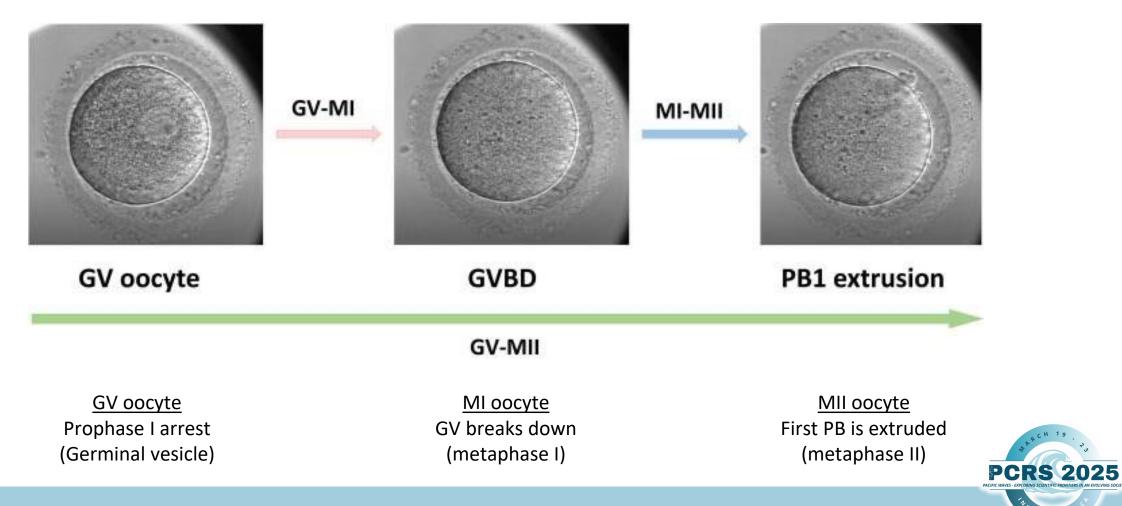
N Engl J Med. 2016 January 21; 374(3): 223-232. doi:10.1056/NEJMoa1510791.

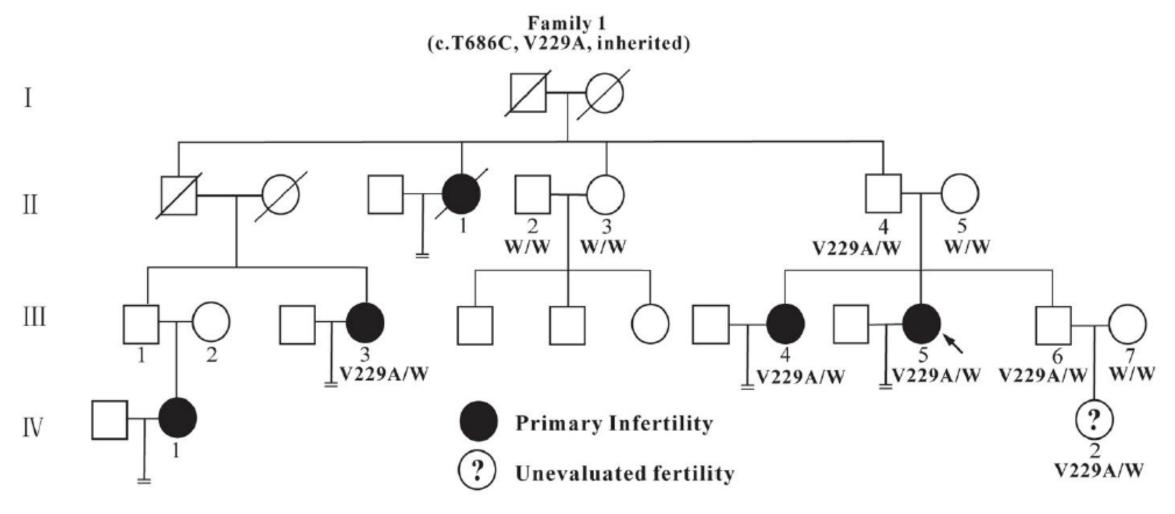
Mutations in TUBB8 cause human oocyte meiotic arrest

Ruizhi Feng^{1,*}, Qing Sang^{1,*}, Yanping Kuang^{2,*}, Xiaoxi Sun^{3,*}, Zheng Yan^{2,*}, Shaozhen Zhang^{2,*}, Juanzi Shi⁴, Guoling Tian⁵, Anna Luchniak⁶, Yusuke Fukuda⁶, Bin Li², Min Yu³, Junling Chen³, Yao Xu¹, Luo Guo⁸, Ronggui Qu¹, Xueqian Wang¹, Zhaogui Sun⁹, Miao Liu⁹, Huijuan Shi⁹, Hongyan Wang¹, Yi Feng¹⁰, Ruijin Shao¹¹, Renjie Chai¹², Qiaoli Li¹, Qinghe Xing¹, Rui Zhang¹³, Eva Nogales^{13,14}, Li Jin¹, Lin He^{1,15}, Mohan L. Gupta Jr.^{6,7}, Nicholas J. Cowan^{#,5}, and Lei Wang^{#,1}

- 4 generations of "female infertility as a consequence of oocyte meiosis I arrest"
- WES to 23 additional patients following the identification of *TUBB8* as a candidate gene
- Assessed the role of TUBB8 in detail

Oocyte Development




Image from Yang et al., 2021

Oocyte maturation and development

- Eggs must be at the MII stage for fertilization to be possible
- Oocyte maturation arrest: egg development arresting before the MII stage
- Prior to this paper being published no genes responsible for ocyte maturation arrest had been identified

r		
L	_	
	V	

	Case	Age (years)	Duration infertility (years) of	Previous IVF/ICSI cycles	Total No of oocyte retrieved	Stage of Oocyte (Number)
Family-1	III-4 (V229A)	37	8	1	4	MI(3)+abnormal morphology oocyte(1)
Family-1	III-5 (V229A)	32	10	2	21	MI(21)
Family-2	II-2 (D417N)	37	9	5	37	GV(7)+MI(30)
Family-3	II-1 (S176L)	34	10	4	43	GV(3)+MI(40)
Family-4	II-1 (R262Q)	37	10	2	12	MI(12)
Family-5	II-1 (M363T)	25	4	3	18	GV(1)+MI(17)
Family-6	II-1 (R2K)	33	7	2	54	GV(2)+MI(52)
Family-7	II-1 (M300I)	26	6	2	26	MI (26)

Clinical details and IVF/ICSI outcome in patients from families 1-7

- Ages ranging from 25-37
- 1-5 IVF cycles
- 4-54 oocytes retrieved
- No MII oocytes with most arresting at MI

TUBB8

- β-tubulin 8
- Expressed at high levels in different stages of human oocyte development
- Essentially absent in mature sperm and somatic tissues
- \bullet Accounts for nearly all of the β -tubulin in human oocytes and early embryos
- Needed for the oocyte spindle

TUBB8 - Further Research

- 2 further studies on women with IVF/ICSI failure
 - 37.2% had TUBB8 variants

The comprehensive variant and phenotypic spectrum of *TUBB8* in female infertility

Wei Zheng¹ · Huiling Hu² · Shuoping Zhang¹ · Xilin Xu² · Yong Gao³ · Fei Gong^{1,2} · Guangxiu Lu^{1,2} · Ge Lin^{1,2}

Received: 29 December 2020 / Accepted: 2 May 2021 / Published online: 10 May 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

- WES on "100 infertile female subjects and 100 controls"
- Evaluate pathogenicity of *TUBB8* variants and compare phenotypes

Variety of Phenotypes observed

- Oocyte maturation arrest
- Poor/no fertilization
- Complete cleavage failure
- Embryonic arrest before blastocyst formation
- High frequency of abnormal fertilization (1PN and MPN)

Multiple Inheritance Patterns

- Mostly autosomal dominant
- Some autosomal recessive

* 616768

TUBULIN, BETA-8; TUBB8

Alternative titles; symbols

TUBULIN, BETA, CLASS VIII

HGNC Approved Gene Symbol: TUBB8

Cytogenetic location: 10p15.3 Genomic coordinates (GRCh38): 10:46,455-76,621 (from NCBI)

Gene-Phenotype Relationships

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key
10p15.3	Oocyte/zygote/embryo maturation arrest 2	616780	AD, AR	3

TUBB8 is not the only gene with multiple phenotypes

Gene 🖵	Î Paper 🔹 Phenotype 1 🔹 Phenotype 2	Phenotype 3 Phenotype 4	Inherita
BTG4	2020 Zheng et al., H Cleavage failure		AR
CDC20	2021 Huang et al., NOocyte maturation arrest Early embryonic	arrest	AR
CDC20	2021 Xu et al., The I Oocyte maturation arrest Fertilization Failu	are Early embryonic arrest	AR
CDC20	2021 Zhao et al., IdeOocyte maturation arrest Fertilizating Failu	ire	AR
FBXO43	2021 Wang et al., Fl Early embryonic arrest		AR
KHDC3L	2018 Wang Novel m Early embryonic arrest		AR
LHCGR	2011 Yariz et al., Ini Empty follicle syndrome		AR
LHCGR	2017 Yuan et al., GeEmpty follicle syndrome		AR
NLRP2	2019 Mu Mutations Early embryonic arrest		AR
NLRP5	2019 Mu Mutations Early embryonic arrest		AR
NLRP5	2022 Tong et al., Mi Early embryonic arrest		AR
OOEP	2022 Tong et al., Mi Early embryonic arrest		AR
PADI6	2016 Xu et al., Muta Early embryonic arrest		AR
PADI6	2018 Wang Novel m Early embryonic arrest		AR
PANX1	2021 Wang et al., H Oocyte death		AR
PANX1	2019 Sang et al., A <mark>Cocyte death</mark>		AD
PATL2	2017 Chen et al., Bi Oocyte maturation arrest Fertilization Failu	re Early embryonic arrest	AR
PATL2	2018 Christou-Kent Oocyte maturation arrest		AR
PATL2	2020 Liu et al., Nove Oocyte maturation arrest		AR
PATL2	2021 Cao et al., The Oocyte maturation arrest		AR
REC114	2019 Wang et al., H Multiple pronuclei Early embryonic	arrest	AR
TLE6	2018 Wang Novel m Early embryonic arrest		AR
TLE6	2015 Alazami et al., Cleavage failure Early embryonic	arrest	AR
TRIP13	2020 Zhang et al., B Oocyte maturation arrest Cleavage failure		AR
TUBB8	2020 Sha et al., Nov Multiple pronuclei		AD
TUBB8	2016 Feng et al., Mt Oocyte maturation arrest		AD
TUBB8	2016 Feng et al., Mi Oocyte maturation arrest Early embryonic	arrest	AD, AR
TUBB8	2017 Chen et al., No Oocyte maturation arrest Fertilization Failu	re Early embryonic arrest	AD, AR
TUBB8	2021 Zheng et al., T Oocyte maturation arrest Fertilization Failu		AD, AR
TUBB8	2022 Yao et al., Mu Oocyte maturation arrest		AD, AR
WEE2	2018 Sang et al., Ho Fertilization failure		AR
WEE2	2021 Jin et al., Nove Fertilization failure		AR
ZP1	2014 Huang et al., NAbnormal zona pellucida		AR
ZP1	2020 Okutman et al Oocyte maturation arrest		AR
ZP1	2022 Loeuillet et al. Oocyte maturation arrest		AR
ZP3	2017 Chen et al., A Empty follicle syndrome Abnormal zona p	pellucida	AD
703	2021 Thang et al. A Empty follicle syndrome Abnormal zona r		

Gene 🖵	Paper	Phenotype 1	Phenotype 2	Phenotype 3 🔽 Phenotype 4 🔽	Inherita 🔻
BTG4	2020 Zheng et al., H	Cleavage failure			AR
CDC20	2021 Huang et al., N	Oocyte maturation arrest	Early embryonic arrest		AR
CDC20	2021 Xu et al., The	Oocyte maturation arrest	Fertilization Failure	Early embryonic arrest	AR
CDC20	2021 Zhao et al., Id	Oocyte maturation arrest	Fertilizating Failure		AR
FBXO43	2021 Wang et al., F	Early embryonic arrest			AR
KHDC3L	2018 Wang Novel m	Early embryonic arrest			AR
LHCGR	2011 Yariz et al., In	Empty follicle syndrome			AR
LHCGR	2017 Yuan et al., Ge	Empty follicle syndrome			AR
NLRP2	2019 Mu Mutations	Early embryonic arrest			AR
NLRP5	2019 Mu Mutations	Early embryonic arrest			AR
NLRP5	2022 Tong et al., M	Early embryonic arrest			AR
OOEP	2022 Tong et al., M	Early embryonic arrest			AR
PADI6	2016 Xu et al., Muta	Early embryonic arrest			AR
PADI6	2018 Wang Novel m	Early embryonic arrest			AR

There are many genes being discovered, and as research evolves, we are learning that the phenotypes and inheritance patterns are not straightforward

TUBB8	2016 Feng et al., Mu	Oocyte maturation arrest	AD
TUBB8	2016 Feng et al., Mu	Oocyte maturation arrest Early embryonic arrest	AD, AR
TUBB8	2017 Chen et al., No	Oocyte maturation arrest Fertilization Failure Early embryonic arrest	AD, AR
TUBB8	2021 Zheng et al., T	Oocyte maturation arrest Fertilization Failure Cleavage failure Early embryonic	AD, AR
TUBB8	2022 Yao et al., Mu	Oocyte maturation arrest	AD, AR
WEE2	2018 Sang et al., Ho	Fertilization failure	AR
WEE2	2021 Jin et al., Nove	Fertilization failure	AR
ZP1	2014 Huang et al., N	Abnormal zona pellucida	AR
ZP1	2020 Okutman et al	Oocyte maturation arrest	AR
ZP1	2022 Loeuillet et al.	Oocyte maturation arrest	AR
ZP3	2017 Chen et al., A	Empty follicle syndrome Abnormal zona pellucida	AD
703	2021 7hang at al A	Empty follicle syndrome Abnormal zona pellucida	۸D

Gene 🖵	Paper 🔹	Phenotype 1	Phenotype 2	Phenotype 3 🔽 Phenotype 4 🔽	Inherita 🔻
BTG4	2020 Zheng et al., H	Cleavage failure			AR
CDC20	2021 Huang et al., N	Oocyte maturation arrest	Early embryonic arrest	t	AR
CDC20	2021 Xu et al., The	Oocyte maturation arrest	Fertilization Failure	Early embryonic arrest	AR
CDC20	2021 Zhao et al., Id	Oocyte maturation arrest	Fertilizating Failure		AR
FBXO43	2021 Wang et al., F	Early embryonic arrest			AR
KHDC3L	2018 Wang Novel m	Early embryonic arrest			AR
LHCGR	2011 Yariz et al., In	Empty follicle syndrome			AR
LHCGR	2017 Yuan et al., Ge	Empty follicle syndrome			AR
NLRP2	2019 Mu Mutations	Early embryonic arrest			AR
NLRP5	2019 Mu Mutations	Early embryonic arrest			AR
NLRP5	2022 Tong et al., M	Early embryonic arrest			AR
OOEP	2022 Tong et al., M	Early embryonic arrest			AR
PADI6	2016 Xu et al., Muta	Early embryonic arrest			AR
PADI6	2018 Wang Novel m	Early embryonic arrest			AR

There are many genes being discovered, and as research evolves, we are learning that the phenotypes and inheritance patterns are not straightforward

TUBB8	2016 Feng et al., Mu	Oocyte maturation arrest	AD
TUBB8	2016 Feng et al., Mu	Oocyte maturation arrest Early embryonic arrest	AD, AR
TUBB8	2017 Chen et al., No	Oocyte maturation arrest Fertilization Failure Early embryonic arrest	AD, AR
TUBB8	2021 Zheng et al., T	Oocyte maturation arrest Fertilization Failure Cleavage failure Early embryonic	AD, AR
TUBB8	2022 Yao et al., Mu	Oocyte maturation arrest	AD, AR
WEE2	2018 Sang et al., Ho	Fertilization failure	AR
WEE2	2021 Jin et al., Nove	Fertilization failure	AR
ZP1	2014 Huang et al., N	Abnormal zona pellucida	AR
ZP1	2020 Okutman et al	Oocyte maturation arrest	AR
ZP1	2022 Loeuillet et al.	Oocyte maturation arrest	AR
ZP3	2017 Chen et al., A	Empty follicle syndrome Abnormal zona pellucida	AD
703	2021 7hang at al A	Empty follicle syndrome Abnormal zona pellucida	٨D

Female Reproductive Genetics Initiative

=		VING	ropean Society	of Human Reproduction an	d Embryolo	gy Q	♠ f X	in 🖸 Ø) ->] Login
FeRC	al Data	abase							
alue to filte	er	Clear Filter							
Download >	(LSX								
Gene		Category	Infertility Phenotype	Phenotype	Inherit	Score	GDR	Variant sheet	Scoring sheet
						\$			
A2BP1	N/A	E/RSD	DSD	Müllerian aplasia	AD	2	No evidence	view pdf	view pdf
AARS2	N/A	NS	POI	Primary ovarian insufficiency	AR	4.5	Limited	view pdf	view pdf
AARS2	615889	S	POI	Leukoencephalopathy, progres	AR	12	Moderate	view pdf	view pdf
ADAMTS1	N/A	NIC	-	Desument misses	4.5		Limited	view pdf	view pdf
ADAMISI	N/A	NS	RM	Recurrent miscarriage	AD	3	Limited	view pui	view pai

https://www.eshre.eu/Specialty-groups/Special-Interest-Groups/Reproductive-Genetics/FeRGI/Database

Basic informations	Answer reviewer 1	Answer reviewer 2
Assessor code reviewer	F1	H1
Date of curation	11/07/2022	9-7-2022
Curated gene	TUBB8	TUBB8
Possible synonyms used for gene name	bA631M21.2	bA631M21.2
ONUNA phonotype	Oocyte/zygote/embryo	Oocyte/zygote/embryo
OMIM phenotype	maturation arrest 2	maturation arrest 2
OMIM disease ID	616780	616780
	27989988, 27273344,	27989988, 27273344,
	26789871, 33009822,	26789871, 33009822,
	32063091, 32524331,	32063091, 32524331,
	32316999, 30297906,	32316999, 30297906,
References describing patients	29671363, 29877102,	29671363, 29877102,
	29661911, 33809228,	29661911, 33809228,
	28652098, 34509376,	28652098, 34509376,
	34160777, 33059025,	34160777, 33059025,
	32949002, 29704226	32949002, 29704226
Step 1: Inheritance informations	Answer reviewer 1	Answer reviewer 2
Incidence	N/A	Familial and sporadic
Reported inheritance	Autosomal dominant and	Autosomal dominant and
	recessive	recessive
Inheritance in animal models	Autosomal recessive	Autosomal recessive
Additional evidence: pLi* and/or o/e scores	pLI=0.02 and o/e=0.62	pLI = 0.02 o/e = 0.62
(for pLoF)		
Conclusion inheritance in HUMAN	Autosomal dominant and	Autosomal dominant and
Conclusion Inneritance in HOMAN	recessive	recessive

https://www.eshre.eu/Specialty-groups/Special-Interest-Groups/Reproductive-Genetics/FeRGI/Database

Summary clinical validity assessment	Reviewer 1	Reviewer 2	
Clinical validity score of reviewers	17	17	
Clinical validity score difference between	C		
reviewers		,	
Clinical validity status	Agreement		
Final clinical validity score (average)	1	7	
Final clinical validity classification (see Tab scores and classifications)	Definitive		

https://www.eshre.eu/Specialty-groups/Special-Interest-Groups/Reproductive-Genetics/FeRGI/Database

Phenotypes – Egg-provider (IVF Failure)

- Genuine Empty Follicle Syndrome
- Oocyte Death
- Abnormal Zona Pellucida
- Oocyte Maturation Arrest
- Fertilization failure
- Cleavage failure
- Multiple pronuclei
- Early embryonic arrest

Phenotypes – Egg-provider

- Primary ovarian insufficiency
- Hypogonadotropic hypogonadism
- Recurrent miscarriage
- Recurrent triploidy
- Recurrent molar pregnancy
- Recurrent implantation failure

Phenotypes – Sperm Provider

- Fertilization failure
- Conventional IVF failure
- ICSI failure
- Early embryonic arrest
- Morphological abnormalities
- Azoospermia

Clinical Utility

of gene panels for IVF failure

1.

Types of Gene Panels

Pre-designed

- Genes are curated by the testing lab
- Infertility panels currently on the US market focus on syndromic infertility
- Laboratories want a high diagnostic yield

Custom

- Genes are selected by the clinician
- More flexibility
- Higher level of genetic expertise required

Narrow

- Genes known to produce phenotype seen in your patient
- Genes with high levels of evidence
- Pro: less chance of uncertain findings

Broad

- Genes related to "male" or "female" infertility
- Genes with less evidence
- Pro: uncertain finding today may be a diagnostic finding tomorrow

Custom Panels

Narrow

- Genes known to produce phenotype seen in your patient
- Genes with high levels of evidence
- Pro: less chance of uncertain findings

Broad

- Genes related to "male" or "female" infertility
- Genes with less evidence
- Pro: uncertain finding today may be a diagnostic finding tomorrow

What makes a genetic diagnosis?

1. A well researched gene known to be related to the patient's phenotype

2. Genetic variant(s) that we know impact the gene function

3. Inheritance pattern matching:

- Number of variants detected
- Family history

What makes a genetic diagnosis?

- A well researched gene known to be related to the patient's phenotype
- Genetic variant(s) that we know impact the gene function
- Inheritance pattern matching
 - Number of variants detected
 - Family history

Genes of Uncertain Significance (GUS)

- Newly discovered genes
- Minimal research, phenotype may not be fully defined
- Testing laboratory may be suspicious that gene is relevant to your patient but can't say conclusively

- Coart

Genes of Uncertain Significance (GUS)

- Newly discovered genes
- Minimal research, phenotype may not be fully defined
- Testing laboratory may be suspicious that gene is relevant to your patient but can't say conclusively

Many of the genes identified related to IVF failure may be GUSs

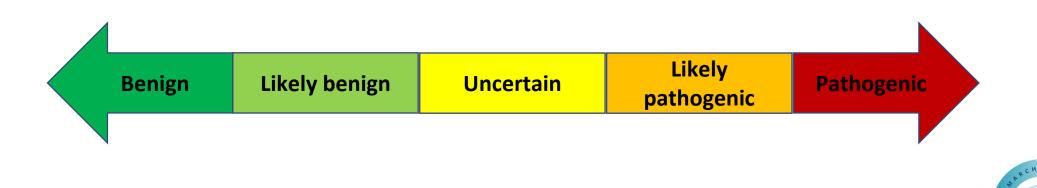
Genes of Uncertain Significance (GUS)

Variants in Genes Possibly Associated with Reported Phenotype:

• Custom panels with variants in GUSs identified may not have infertility phenotypes included in the gene descriptions

What makes a genetic diagnosis?

- A well researched gene known to be related to the patient's phenotype
- Genetic variant(s) that we know impact the gene function
- Inheritance pattern matching
 - Number of variants detected
 - Family history


Variant pathogenicity

Variant pathogenicity

- Location within the gene (hot spot/critical regions)
- Prevalence in case/control studies
- *In vitro* analysis tools
- Testing relatives

PCRS 20

Variant of uncertain significance (VUSs)

- Not enough evidence to classify a variant as pathogenic or benign
- Common in genes that are newly discovered
- Cannot be used for diagnostic purposes

Variant of uncertain significance (VUSs)

- Not enough evidence to classify a variant as pathogenic or benign
- Common in genes that are newly discovered
- Cannot be used for diagnostic purposes

VUSs are common in genetic testing for IVF failure

What makes a genetic diagnosis?

- A well researched gene known to be related to the patient's phenotype
- Genetic variant(s) that we know impact the gene function

Inheritance pattern matching

- Number of variants detected
- Family history

Inheritance Pattern

- If autosomal recessive
 - Single variant identified is not sufficient for diagnosis
- If autosomal dominant
 - Which parent was the variant inherited from?

Testing Relatives

- Female infertility
 - Variant inherited from mother unlikely to be pathogenic

The comprehensive variant and phenotypic spectrum of *TUBB8* in female infertility

Wei Zheng¹ · Huiling Hu² · Shuoping Zhang¹ · Xilin Xu² · Yong Gao³ · Fei Gong^{1,2} · Guangxiu Lu^{1,2} · Ge Lin^{1,2}

Received: 29 December 2020 / Accepted: 2 May 2021 / Published online: 10 May 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

- 16 of the reported 102 *TUBB8* variants assessed could be classified as likely pathogenic (LP)
- For patients with LP variants, donor eggs may be the most feasible for conceiving at present
- Pathogenicity of all *TUBB8* variants couldn't be evaluated in this study
 - Lack of DNA from parents

When panels might be useful

- Same phenotype in multiple cycles despite protocol changes
- Most/all of the follicles/oocytes/embryos affected
- Suspicious family history
- Consanguinity
- Patient is interested in answers
- Possible insight into outcome of treatment
- Informative for family members

Genetic Counseling

Prep

- Establish physician relationship
- Obtain records
- Obtain family history via questionnaire

Pre-test counseling

- Review personal and family medical history
- Discuss other limitations and considerations
- Review logistics
- Discuss result disclosure protocols
- Emphasize testing is optional
 - Facilitate decision-making re: testing
- Emotional support

Post-test counseling

- Check-in
- Disclose results
- Explain what they mean
- Discuss further testing if needed
- Physician to determine if findings explain phenotype
- Emotional support
- Encourage keeping in touch

The answer we've been waiting for?

The answer we've been waiting for?

- Significant advances in gene discovery for IVF failure
- Results may:
 - Explain phenotype
 - Guide decision to move to donor gametes
 - Guide treatment
 - Provide insight to other family members on fertility status
- High chance of uncertain results
- Fertility genetics expertise is needed before testing and when interpreting results

References

Chen, T., Bian, Y., Liu, X., Zhao, S., Wu, K., Yan, L., Li, M., Yang, Z., Liu, H., Zhao, H., & Chen, Z. J. (2017). A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility. American journal of human genetics, 101(3), 459–465. <u>https://doi.org/10.1016/j.ajhg.2017.08.001</u>

Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Tian, G., Luchniak, A., Fukuda, Y., Li, B., Yu, M., Chen, J., Xu, Y., Guo, L., Qu, R., Wang, X., Sun, Z., Liu, M., Shi, H., ... Wang, L. (2016). Mutations in TUBB8 and Human Oocyte Meiotic Arrest. The New England journal of medicine, 374(3), 223–232. https://doi.org/10.1056/NEJMoa1510791

Van Der Kelen A, Okutman Ö, Javey E, et al. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. *Hum Reprod Update*. 2023;29(2):218-232. doi:10.1093/humupd/dmac044

Xin A, Qu R, Chen G, et al. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor inducing early embryonic arrest. *Sci Adv.* 2020;6(35):eaaz4796. Published 2020 Aug 28. doi:10.1126/sciadv.aaz4796

Yang, Q., Zhu, L., Wang, M., Huang, B., Li, Z., Hu, J., Xi, Q., Liu, J., & Jin, L. (2021). Analysis of maturation dynamics and developmental competence of in vitro matured oocytes under time-lapse monitoring. Reproductive biology and endocrinology : RB&E, 19(1), 183. https://doi.org/10.1186/s12958-021-00868-0

Zheng, W., Hu, H., Zhang, S., Xu, X., Gao, Y., Gong, F., Lu, G., & Lin, G. (2021). The comprehensive variant and phenotypic spectrum of TUBB8 in female infertility. Journal of assisted reproduction and genetics, 38(9), 2261–2272. https://doi.org/10.1007/s10815-021-02219-9

Meaghan Doyle, MS, LCGC (she/her) <u>meaghan@DNAide.com</u> @MeaghanDoyleGC