Rethinking Reproduction

Past and future of in vitro gametogenesis (IVG)

Pablo Hurtado Gonzalez

Conflict of interest

I'm co-founder and CSO at Conception

- 40 scientist working full time
- State-of-the-art facilities
- \$40+MM raised so far

Let's dive in the world of in vitro gametogenesis (IVG)

Needs Assessment Statement:

- IVG is a transformative advancement in reproductive biology.
- Recent progress has brought IVG closer to clinical application.
- There is a need to educate IVF professionals and clinicians on IVG's potential impact and future integration into practice.

Expected Learning Outcomes:

- Describe the current state and key advancements in IVG research.
- Identify the major scientific bottlenecks in IVG development.
- Analyze initial considerations for IVG regulatory frameworks.

Infertility has many causes

Causes of Female Fertility Problems

Aovulation Tube Problem Implanatation Cervical Sexual Other

Causes of Male Infertility

IVG - A single technology to solve the majority of infertility issues

Review: Saitou and Hayashi 2021

Germ cells are probably the most complex cell type

Review: Saitou and Hayashi 2021

The story of mouse IVG

Over 15 years of research progressing mPSCs into eggs and sperm

Adapted from Saitou and Hayashi 2021

Mouse

Generation of eggs

Generating the ovarian somatic compartment in vitro

Functional oocytes from male iPSCs

Generation of round spermatid-like cells from mESCs

Haploidy in somatic cells induced by mature oocytes

One-day-old SH-pups

15-week-old SH-mice

F1 of SH-mouse

The story of Human IVG

Over 15 years of research progressing iPSC into eggs and sperm

Generation of hPGCLCs in vitro

Progressing hPGCLC into oogonia stage

А

Generating follicles from hPGCLCs - closing the gap

Germ cells (DDX4) Granulosa cells (FOXL2)

Fetal ovary

iPSC derived germ cells

Adult human ovary (18 years old)

Conception's organoid

Scientific challenges for human IVG

- Length of the cultures
- Following all the biological steps
 - Many of these cells might be skipping some important events of gametogenesis
- Epigenetics
 - Germ cells have to go through whole genome epigenetic reprogramming
 - In vitro culture can affect epigenetics
- General low efficiency
 - Lots of optimization to do
- Embryos need to be PERFECT
 - We cannot accept risk when generating new life

How can we make sure everything goes right?

- Animal safety data
 - Mouse
 - NHP
- Human studies
 - Many steps of the process can be studied in depth, but studying the embryo is the ultimate goal
 - We can learn from the IVF field
 - Intrinsic check points
 - Embryo morphology
 - Embryo biopsies + sequencing

Already thinking concretely about how to measure pre-clinical safety

• Making the first proof of concept egg is not 10 years off - we think could be in the next 1-2 years

 Proof of concept won't be ready for implantation - years of in vitro optimization, QC development, and animal/safety testing of course must follow

• What are the specific benchmarks that IVG must meet to be eventually considered for human trials?

We can do extensive pre-clinical characterization in vitro

- Full understanding of the embryo quality:
 - Genetic sequencing
 - RNA sequencing
 - Epigenetic profiling
 - Morphological analysis
- IVG specific benchmarks:
 - Proper epigenetic resets
 - Meiosis occurring normally
 - Mitochondria studies
- Compare IVG generated embryos with traditional IVF embryos (gold standard in medicine for embryos to develop in culture for 5-6 days before transplant)

Animal models can help us determining safety

- in-depth mouse IVG health data could be very valuable:
 - Multi generational studies
 - Genetic integrity

• Non-human primates might be the closest model to human

• What are ultimately the critical animal models?

If it is safe, many people could benefit profoundly

 Conception receives 2-3 emails every week from young cancer survivors, women who have gone through multiple IVF cycles without success, same sex couples dreaming to have children, and more

• The stories they share with us are incredible — this is the most important thing to many of them in their lives

If approved clinically, envision working with existing IVF clinics on this

• IVF clinics would take blood or skin samples from patients and send them to us – we would make eggs and/or embryos to send back

• Implantation procedures would occur as normal with IVF

• Could potentially enable much wider use of PGT-P given could create an higher number of eggs

In the meantime, we could use your help!

• Access to human eggs that are not needed

• Access to human embryos that are no longer wanted

Very helpful for us to characterize and sequence healthy eggs/embryos – come speak with me if would like to explore collaborating

Questions?