EXPANDING EXTENDED SEARCH TO REDUCE EXCISION:

An analysis of Extended Sperm Search and Microfreeze (ESSM) outcomes in Assisted Reproductive Technology (ART)

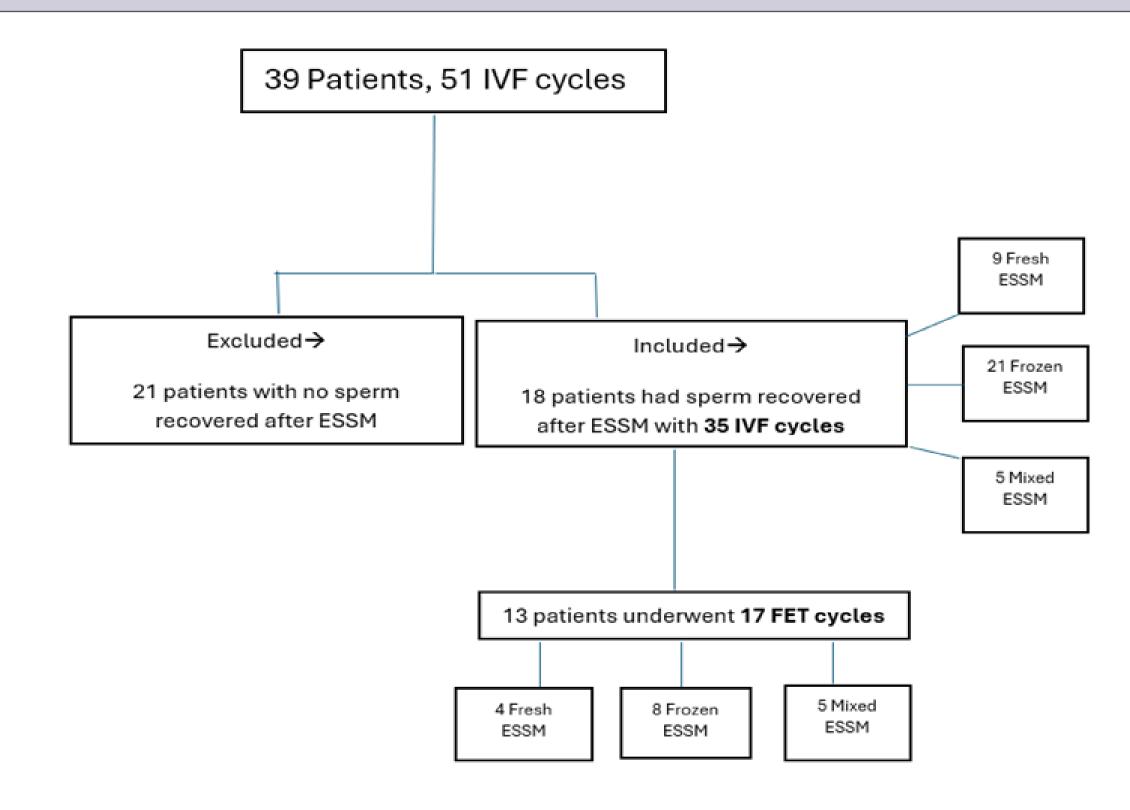
NYU Langone Prelude Fertility Center

Emily Weidenbaum MD¹, Jenna Reich¹, Brady Gelvin¹, Caroline McCaffery PHD, HCLD², Jennifer Blakemore MD², Bobby Najari MD³

¹NYU Grossman School of Medicine, New York, NY, ²NYU Langone Prelude Fertility Center, New York, NY, ³Department of Urology, NYU Grossman School of Medicine, New York, NY

BACKGROUND

- Male factor accounts for 20-30% of infertility cases but can contribute to 50% of cases overall¹.
- ESSM is a non-invasive alternative that uses laboratory techniques to identify small numbers
 of sperm in ejaculate to avoid potential side effects of invasive procedures such as
 microtesticular sperm extraction (TESE)
- While ESSM may be equivalent to TESE in terms of ART outcomes, the finding of sperm can be technically challenging, require highly trained personnel, and is excessively time consuming
- Utilizing ESSM poses a challenge for lab management in high volume centers
- Therefore, many utilize an option for both fresh and frozen ESSM samples, to ensure there is viable sperm on day of oocyte retrieval and to aid with coordination of clinical care
- There is no consensus on the efficacy of fresh versus previous frozen ejaculated sperm for patients who undergo ESSM


OBJECTIVE

- 1) To describe the overall cohort of patients with sperm found on ESSM at our center
- 2) To evaluate our ESSM ART outcomes with a specific focus on fresh versus frozen ESSM

MATERIALS & METHODS

- Retrospective cohort study, (NYU IRB #13-00389)
- Subjects: Male patients who underwent ESSM where sperm was recovered, at a single university-affiliated center from 1/2022-8/2023.
- Inclusion criteria: (1) diagnosis of severe male factor (2) referred to ESSM from our center (3) sperm were found on ESSM.
- Exclusion criteria: no sperm found on ESSM
- Primary Outcome: fertilization rate defined as Number 2pronuclear zygotes/Number of oocytes for intracytoplasmic sperm injection-ICSI
- Secondary Outcomes:
 - blastocyst formation rate (#totalblastocysts/#2PN)
 - euploidy rate (#euploids/#blasts biopsied)
 - embryo transfer outcomes
- Statistical analysis: Kruskal Wallace with an alpha error of 0.05 as significant

FIGURE 1: FLOW DIAGRAM OF INCLUDED PATIENTS

Diagnoses for Male Factor for 18 Included Patients:

- 2 patients with a history of chemotherapy: 1 with stage 1B seminoma s/p left radial orchiectomy with azoospermia,
 another with chemotherapy induced cryptospermia
- 13 patients had idiopathic cryptospermia or non-obstructive azoospermia
- 1 patient each with a history of spina bifida affecting the urogenital system
- 1 with severe narcotic abuse following history of spinal surgery,
- 1 with a genetic male factor from a Robertsonian translocation t(13,14) with primary ciliary dyskinesia.

RESULTS: OUTCOMES OF ESSM COHORT

Overall ART Outcomes:

- 18 patients had sperm recovered→34 IVF cycles-→ 17 ETs
- Median number of sperm recovered: 16 (IQR 12.3-48); egg age: 36y (IQR 31-39.3); sperm age: 42.5y (IQR 33-41.5).
- Median fertilization rate: 63.0% (IQR 29.6%-71.4%); blast formation rate: 47.0% (IQR 23.0-60.0%): euploidy rate: 33.3% (IQR 18.8%-71.4%)
- Livebirth rate: 53% (9/17); negative pregnancy rate: 29.5% (5/17); biochemical pregnancy rate: 6% (1/17); SAB: 6% (2/17)

CONCLUSIONS

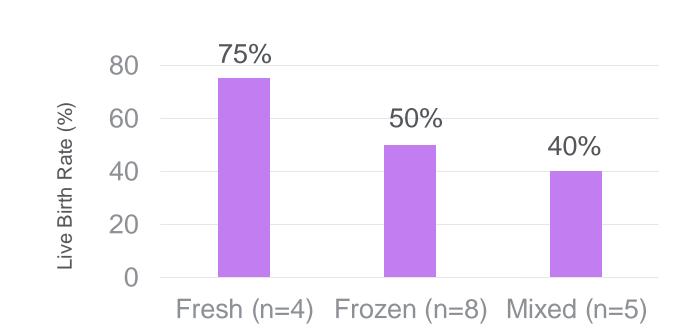
- 1) ESSM is an emerging option for patients with severe MF infertility with an overall LBR rate of 53% which is comparable to the national euploid livebirth rate of 56.3% for patients 35-37yo.²
- 2) Though this study showed better fertilization with fresh sperm, the blast formation rate, euploidy, and live birth rate did not differ; thus the difference of fresh versus frozen ESSM is yet to be determined

TABLE 1: OUTCOMES BY FRESH VERSUS FROZEN SPERM

	Fresh (n=9)	Frozen (n=21)	Mixed (n=5)	P value
Egg source Age (years)	34.0 (30-36.5)	37.0 (31.5-40.0)	36 (31.5-39.5)	0.45
Sperm source Age (years)	39.0 (33.0-43.0)	36.0 (33.0-40.0)	37.5 (32.0-42.3)	0.97
Number of Motile Sperm	26.0 (16.0-55.0)	20.0 (7.5-32.75)	49.0 (5-49.0)	0.47
Fertilization Rate (%)	0.71 (0.63-0.82)	0.4 (0.12-0.48)	0.5 (0.33-0.65)	<0.01
Blast Formation Rate (%)	0.5 (0.36-0.60)	0.33 (0-0.62)	0.53 (0.45-0.7)	0.27
Euploid Rate (%)	0.5 (0.38-0.64)	0.41 (0-1.00)	0.6 (0.3-0.91)	0.72

Table 1. Data presented as Median and IQR

RESULTS: SUBGROUP ANALYSIS OF ART OUTCOMES BY ESSM TYPE


Table 1:

- Demographics including oocyte age, sperm age, and number of sperm recovered were not different between the groups (p=0.45, p=0.97, p=0.47, respectively)
- Median fertilization rate between the groups was different (p<0.01)
 - Fresh: 71.0% (IQR 63.0-81.0%)
 - Frozen: 40% (IQR 10%-48%)
- Mixed: 50% (IQR 0-50%)
 No difference in blast formation rate and euploidy rate between the groups, p=0.27, p=0.72 respectively)

Figure 2:

- the live birth rate for fresh ESSM who underwent transfer (n=4) was 75% (3/4), for frozen (n=8) was 50% (4/8), and for mixed (n=5) was 40% (2/5), p=0.92
- Of the two live births in mixed cohort, one was ultimately with frozen and one with fresh

FIGURE 2: LIVE BIRTH RATES PER TYPE OF ESSM SPERM

There was no difference in overall LBR between fresh, frozen, and mixed ESSM

(p = 0.92)

REFERENCES

1) Miller N, Biron-Shental T, Pasternak Y, Belenky M, Shefi S, Itsykson P, Berkovitz A. "Fertility outcomes after extended searches for ejaculated spermatozoa in men with virtual azoospermia"

2) www.SART.org: National Summary Report

ACKNOWLEDGEMENTS

This work was made possible by our collaborators at MAZE Health Laboratory:
Thank you to: Dr Michael Werner and Chaya
Rothschild, ELS/ALS (AAB)