

Howard J. Li¹, Peter G. Lindner², Alexandra M. Poch¹, Kerry Flannagan³, Micah J. Hill³, Kate Devine³, Phillip A. Romanski³, Trimble Spitzer² 1. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) 2. Walter Reed National Military Medical Center (WRNMMC), 3. Shady Grove Fertility Center

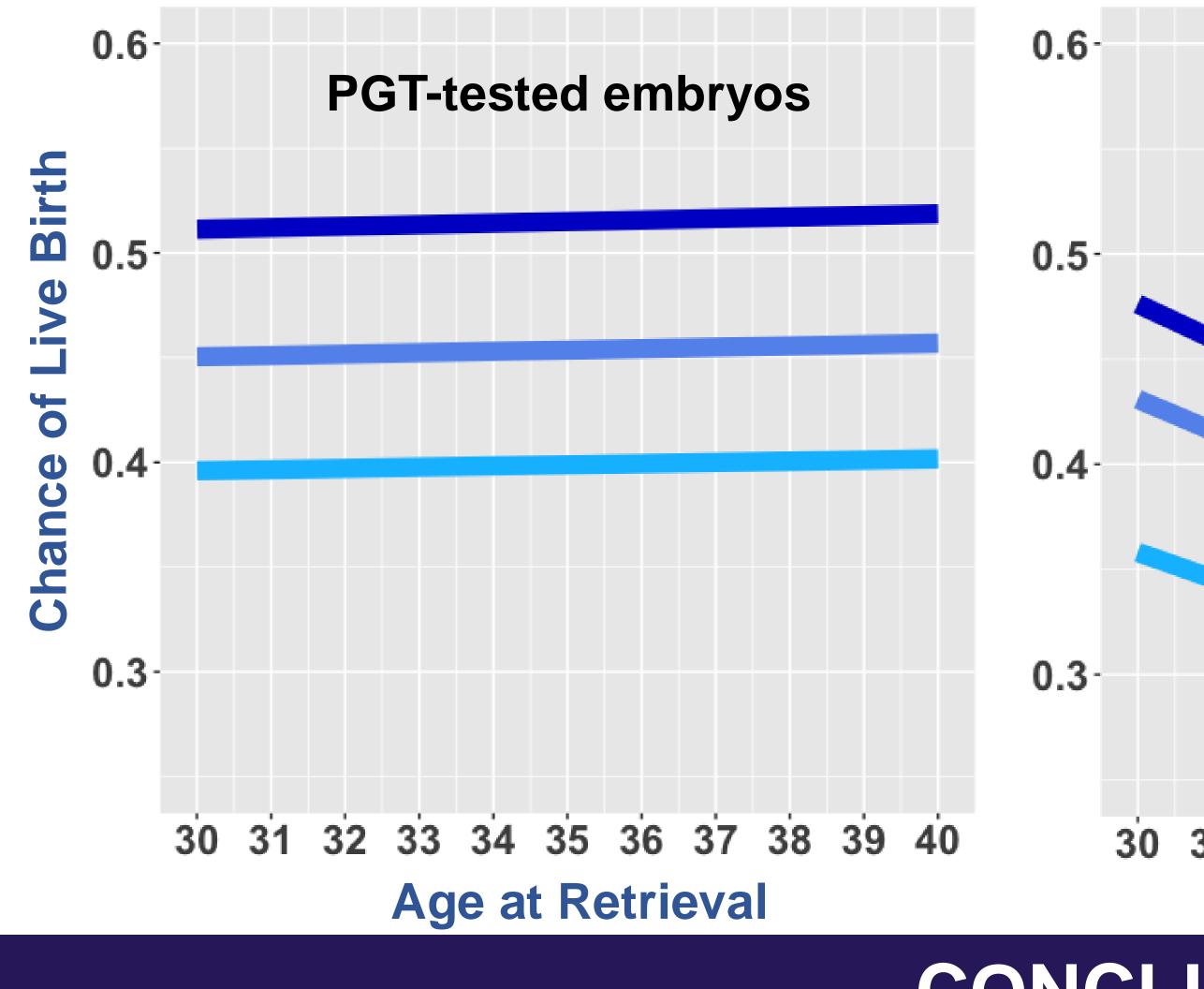
BACKGROUND

- With the prevailing use of single embryo transfers, embryo selection is critical for optimizing outcomes and minimizing time to pregnancy.
- Blastulation time and morphologic grade are the main factors considered in embryo selection, but their relative utilities in predicting live birth is not well understood.
- This evidence gap becomes apparent when selecting between embryos with discordant prognoses based on day of freeze vs. morphologic grade (e.g. Day 6 AA vs. Day 5 BB).

OBJECTIVE

Compare the effects of **blastulation day** (day of freeze) and embryo morphology on live birth after single frozen embryo transfer (FET).

METHODS


- Retrospective analysis of autologous single **FET cycles** across a large fertility network, **2010**-2023.
- Primary outcome was live birth. Generalized Estimating Equations (GEE) were used to fit a Poisson regression model with age at retrieval, day of freeze (D5, D6, D7), and simplified SART morphology (Good, Fair, Poor).
- Patient-level observation clustering was used account for multiple transfers per patient.
- Stratified analysis was performed for untested embryos and PGT-A-tested embryos, and for age < 35 and \geq 35 at time of oocyte retrieval.

BLASTULATION DAY IS MORE PREDICTIVE OF LIVE BIRTH THAN MORPHOLOGIC GRADE IN SINGLE FROZEN EMBRYO TRANSFERS, REGARDLESS OF AGE OR PGT-A TESTING

Table: Poisson Regression Analysis: Relative Risk of Live Birth by Age, Day of Freeze, and Embryo Morphology					
	All Cycles (n = 67,037)	Untested $(n = 26,201)$	PGT-tested $(n = 40,836)$	Age < 35 (n = 34,352)	Age ≥ 35 (n = 32,685)
Age (y)	0.997 (0.994 - 0.999)	0.965 (0.961 - 0.969)	1.001 (0.998 - 1.005)	1.002 (0.997 - 1.007)	0.991 (0.985 - 0.998)
Day of Freeze					
D5	Referent	Referent	Referent	Referent	Referent
D6	0.772 (0.756 - 0.788)	0.752 (0.724 - 0.781)	0.774 (0.756 - 0.793)	0.758 (0.736 - 0.781)	0.787 (0.765 - 0.810)
D7	0.395 (0.354 - 0.441)	0.339 (0.273 - 0.420)	0.428 (0.377 - 0.485)	0.377 (0.315 - 0.450)	0.411 (0.357 - 0.473)
Morphology					
Good	Referent	Referent	Referent	Referent	Referent
Fair	0.877 (0.858 - 0.897)	0.905 (0.872 - 0.939)	0.881 (0.857 - 0.905)	0.924 (0.897 - 0.952)	0.830 (0.804 - 0.858)
Poor	0.426 (0.312 - 0.582)	0.294 (0.136 - 0.638)	0.474 (0.338 - 0.663)	0.505 (0.322 - 0.792)	0.373 (0.242 - 0.575)
• 67 027 EET ove	cles included in the final	Figure: Modeled chance of live birth by age & embryo quality (D5-Good, D5-Fair, D6-Good)			
 analysis. Live b transfers, 38.5 44.7% for PGT- Across all trans association with morphology. Analogous result PGT-A testing at of live birth association me of live birth association 	birth occurred in 42.3% of all % for untested embryos, and A tested embryos. fers, live birth had a stronger th blastulation day than Its were seen when stratifying b and age at retrieval. eans analysis, the relative risks ociated with D5-Fair and D6- swere significantly different +0.13, p < 0.001).	y 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	ested embryos 0.5- 0.4- 0.4- 0.4- 0.3- 0.3- 0.3- 0.3- 0.3-	Untested embryos	B 39 40
 Modeled absolute risks of live birth for D5- Good, D5-Fair, and D6-Good embryos were 48.6%, 42.6%, and 37.5%, respectively. Selecting a D5-Fair over a D6-Good embryo had an absolute risk difference of +5.1% for live birth, with a number needed to treat (NNT) of 		CONCLUSIONS			
		d predicting live birth following single FET – across all cycles, and in stratified analysis of untested vs. PGT-A-tested			y, a D5-Fair embryo has a ty greater (~5%) ive potential compared to a embryo .

Diffin, with a number needed to treat (mini) of **20** transfers.

RESULTS

The expressed views are those of the authors and do not reflect the official policy of the National Institutes of Health, Department of Defense, or U.S. Government.