

Utilization of Tissue Measurements of Steroids to Analyze Their Significance in the Development of Endometrial Hyperplasia in PCOS Patients

¹Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; ²HRC Fertility, Pasadena, CA, USA; ³Reproductive Science Center, San Ramon, CA, USA

Background

- Polycystic ovarian syndrome (PCOS) is a common endocrinopathy affecting reproductive-age women¹
- Common comorbidities include obesity, hyperinsulinemia, endometrial hyperplasia (EH), endometrial cancer (EC), and infertility²
- While the role of estrogens in the development of EH/EC is well established, the effects of androgens on the endometrium remain unclear³
- Recent findings suggest that women with PCOS and normal endometrial pathology have higher serum free testosterone (FT) and total testosterone (TT) compared to those with EH and EC; however, no studies have examined the endometrial tissue concentrations of hormones in PCOS women

Objective

To evaluate the endometrial tissue and serum concentrations of testosterone (T) and estradiol (E2) in PCOS women with a normal endometrium and EH/EC, and to correlate these concentrations with various clinical parameters

Methods

- Preliminary, prospective cohort study
- Single REI clinic in a safety-net hospital
- Inclusion criteria: reproductive-age women (18-40 years of age) diagnosed with PCOS using Rotterdam criteria
- Blood was collected at the time of routine endometrial biopsy
- Half the biopsy specimen was sent for histopathologic diagnosis, while the other half was used to measure tissue concentrations of T and E2 via mass spectrometry
- Clinical parameters collected included: ethnicity, body mass index (BMI), serum insulin and hemoglobin A1c (HbA1c), Ferriman-Gallwey score, endometrial thickness, and sex hormone binding globulin (SHBG)
- Characteristics between the 2 groups were compared using the Student's t-test or Mann-Whitney U test as appropriate
- Correlation coefficients (r) were calculated via the Spearman correlation test
- p value < 0.05 was statistically significant

Kimberly Yau, MD¹; Frank Stanczyk, PhD¹; Anne-Marie Tehn-Addy, BA¹; Lihong Ma²; Intira Sriprasert¹; Ravi Agarwal, MD³; Lynda McGinnis, PhD¹; Sharon Winer, MD¹; Richard J Paulson, MD, MS¹

Table 1. Characteristics by Pathology				
Characteristic	Normal/Benign (n=36)	Hyperplasia/EIN/Cancer (n=4)	P value	 Comparison of the benign pathology and EH/EC groups suggest lower
Age (years)	30.4 ± 5.6	28.7 ± 7.9	0.59	serum TT and FT in the EH/EC group.
Ethnicity (%)			0.71	while tissue TT levels remained
Hispanic	24 (66.7)	4 (100)		unchanged
Caucasian	1 (2.8)	0 (0)		 Sorumiticsup TT ratios word high in
Not Hispanic/Latino	8 (22.2)	0 (0)		both groups on compored to low
Not documented	3 (8.3)	0 (0)		both groups as compared to low
BMI (kg/m ²)	35.5 ± 6.1	40.8 ± 5	0.11	serum:tissue E2 ratios, suggesting
FG Score	10.8 ± 7.9	13.5 ± 13.5	0.76	conversion of 1 to E2 in the
Endometrial Thickness (mm)	8.3 ± 2.5	11.1 ± 1.2	0.059	endometrium
Tissue weight (g)	0.29 ± 0.22	0.59 ±0.35	0.058	 In the benign pathology group,
Serum E2 (pg/mL)	65.4 ± 66.5	150 ± 180.3	0.23	significant correlations were observed
Tissue E2 (pg/g)	565.9 ± 616.2	573.5 ± 675.3	0.98	between serum TT, serum E2 (r=0.39,
Serum:Tissue E2 Ratio	0.68 ± 1.3	0.45 ± 0.65	0.85	p=0.021), and SHBG (r=0.38, p=0.027)
Serum total T (ng/mL)	0.43 ± 0.19	0.29 ± 0.12	0.16	 Additional correlations were seen
Serum free T (pg/mL)	8.26 ± 4.1	6.7 ± 2.8	0.49	between the serum:tissue TT ratio and
Tissue T (ng/g)	0.15 ± 0.9	0.16 ± 0.16	0.77	both insulin ($r=0.39$, $p=0.02$) and
Serum:Tissue TT Ratio	3.87 ± 2.9	3.81 ± 2.8	0.98	HbA1c (r=0.37, p=0.033), with BMI
Serum insulin (uIU/mL)	57.3 ± 56.8	43.5 ± 38.9	0.6	nearing significance (r=0.34, p=0.05)
HbA1c	5.9 ± 1.1	6.1 ± 1.2	1.0	
SHBG (nmol/L)	27.8 ± 16.6	14.8 ± 2.9	0.047	

Publishing; 2024 Jan-. PMID: 29083730. 10.3390/jpm13020341. PMID: 36836575; PMCID: PMC9960114.

Results

Conclusions

Our findings indicate that serum TT concentrations are lower in the EH/EC group compared to the normal group, which aligns with previous studies. However, this decrease is not reflected in tissue TT concentrations. Due to the conversion of TT to E2 in the endometrium, serum TT concentrations may overestimate tissue TT concentrations by nearly fourfold. Correlation analysis suggests relationships between serum and tissue hormone concentrations and SHBG, insulin, HbA1c, and possibly BMI. Our data suggest that measuring steroids in endometrial tissue is helpful in evaluating their significance in the development of endometrial hyperplasia in PCOS patients. However, given our limited sample size, additional studies with a larger EH/EC cohort are warranted.

References

1. Yang J, Chen C. Hormonal changes in PCOS. J Endocrinol. 2024 Feb 15;261(1):e230342. doi: 10.1530/JOE-23-0342. PMID: 38285626. 2. Rasquin LI, Anastasopoulou C, Mayrin JV. Polycystic Ovarian Disease. 2022 Nov 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls

3. Maček P, Molinari N, Sobočan M, Knez J. What Role do Androgens Play in Endometrial Cancer? J Pers Med. 2023 Feb 16;13(2):341. doi:

