SAFETY AND EFFICACY OF FERTILITY PRESERVATION IN SICKLE CELL DISEASE AND TRANSFUSION DEPENDENT THALASSEMIA PATIENTS UNDERGOING GENE EDITING THERAPIES

²Nashville Fertility Center, Nashville, TN. ³Vanderbilt University School of Medicine, Nashville, TN. ⁴Sarah Cannon Research Institute, Nashville, TN.

Background

- Sickle cell disease (SCD) transfusion dependent β thalassemia (TDT) are autosomal recessive disorders caused by gen mutations that impair the function of the hemoglob subunit
- Advancements in gene therapy (GT) offer the potential for a functional cure of these conditions. However, the use of busi conditioning can result in infertility, making fertility preservation (FP) a critic component of
 - multidisciplinary care
- Despite its importance, is very limited data on the safety and efficacy of FP in individuals with SCD and TDT

- Sarah Hmaidan, DO¹; Kristin Van Heertum, MD²; Shreya Bhatia, MS-4³; Haydar Frangoul, MD⁴ ¹Baylor College of Medicine, Reproductive Endocrinology and Infertility, Houston, TX.

Material & Methods

9) and 3-	 Retrospective case series of patients with SCD and TDT undergoing FP prior to GT 		
	 Participants in the trial were 		
etic	offered FP services via		
е	oocyte or sperm		
bin β	cryopreservation at		
	Nashville Fertility Center		
	 Inclusion: pubertal patients 		
	without contraindication to		
l	oocyte or sperm		
•	cryopreservation		
ulfan	 Following FP consultation, 		
n	individualized care plans were developed for each		
/			
al	patient		
there	Collect stom colls Conditioning		

regimer

chemotherapy

Zinc Finger

TALENS

CRISPR/Cas-9

Ex vivo gene addition or

gene editing of stem cells

from patient

genetically modified cells into patient

Results

Table 1: Demographics &	SCD	TDT
Age (yrs)	24.2 (11-34)	18.9 (12-33)
Sex	8 females 6 males	9 females 8 males
Mean AMH (ng/mL)	2.6 (0.6-7.3)	2.8 (1.1-4.26)
Mean cycles ovarian stim	1.3 (1-2)	1.4 (1-3)
Mean oocytes retrieved	19 (6-42)	14 (3-30)
Mean oocytes cryopreserved	15 (6-37)	11 (3-24)
Mean duration gonadotropin treatment (days)	10 (7-14)	9.6 (6-14)
Mean total FSH dose (IU)	2311 (1050- 3900)	2521 (875- 4500)
Mean sperm vials cryopreserved	3 (1-7)	6 (1-12)
Mean sperm concentration (million/mL)	23.6 (0-160)	115.8 (1-338)
Mean sperm motility (%)	49 (24-73)	50 (4-72)

- No complications reported
- Four oocyte cryopreservation patients required additional pain medication postprocedure
- One patients cycle canceled due to poor response

Objective:

To evaluate the safety of ovarian stimulation and assess outcomes of oocyte and sperm cryopreservation in individuals with SCD and TDT prior to gene therapy

Conclusion

• GT for SCD and TDT necessitate gonadotoxic conditioning, which can lead to infertility • Providing FP is extremely important for patients pursuing curative therapy • This case series demonstrates that oocyte and sperm cryopreservation is feasible, safe and successful in patients with SCD and TDT • Special attention should be given to perioperative care and postoperative pain management in patients with SCD