Post Trigger Labs Can Be Interpreted Similarly in Oral Progestin Suppressed IVF Protocol

Loughran PJ¹, Gilgannon LT¹, Zhou DP², Fox KA³, Gosschalk JE³, Goodman LR¹

¹Virginia Fertility and IVF, University of Virginia Department of Obstetrics & Gynecology, Charlottesville, VA ²Pacific Northwest Fertility, Seattle, WA ³Department of Obstetrics and Gynecology, Swedish Medical Center, WA

Background

- Progestin-suppressed IVF cycles are gaining popularity secondary to efficacy, improved logistics and patient satisfaction.¹
- Using progestin to prevent ovulation affects progesterone (P4) levels during stimulation, but it is unknown if post-trigger labs (LH and P4) are affected by use of a progestin during stimulation.

Objective

The goal of this prospective cohort study was to compare post GnRHagonist trigger LH and progesterone levels in patients undergoing oral progestin vs. GnRH antagonist IVF stimulation cycles

Methods

- Two academic-affiliated private centers
- 465 patients aged 18-44yo undergoing autologous medroxyprogesterone acetate (MPA) and antagonist IVF cycles between January 2021- August 2024

Results

- expected.
- Significant differences were identified in the LH and P4 levels between among groups, but all were above the threshold of confirmed trigger success
- Oocytes retrieved, mature oocytes (M2) and usable euploid blastocysts were similar between groups (figure 1)

Table '	1
---------	---

Table 1	MPA GnRH-a only (n = 220)	Antag GnRH-a only (n = 110)	Antag Dual Trigger (n = 135)	p-valı
Age (years)	33.3 ± 4.5	33.4 ± 4.5	31.6 ± 5.3	0.001
AMH (ng/ml)	6.2 ± 5.1	8.1 ± 6.2	4.7 ± 2.6	<0.01
E2 (pg/ml)	5276 ± 2146	5025 ± 1647	5013 ± 2092	0.39
LH (IU/ml)	70.6 ± 33.6	60.8 ± 31.7	34.2 ± 20.6	<0.01
P4 (ng/ml)	10.0 ± 4.6	12.1 ± 5.9	9.7 ± 3.6	<0.01
Oocyte (n)	24.5 ± 11.8	26.4 ± 10.9	24.2 ± 7.3	0.20
MII (n)	18.1 ± 8.7	19.9 ± 8.4	18.9 ± 6.7	0.23
2PN (n)	13.5 ± 8.1	16.0 ± 7.8	14.3 ± 5.9	0.03
Blastocysts (n)	7.4 ± 5.3	9.9 ± 5.7	8.9 ± 5.2	0.01
Euploid blastocysts (n)	3.7 ± 2.9	4.7 ± 3.3	3.9 ± 2.9	0.09

Patients that underwent GnRH-a only trigger cycles had higher AMH values, as

One patient in the dual trigger group failed and needed to be triggered again

Conclusions

- Traditional post trigger thresholds (LH and P4) can be used to ensure adequate response in the MPA protocol
- GnRH-a only triggers are effective in MPA cycles
- Sharing nuances can be helpful to other practices looking to implement the MPA protocol

References

• Welp AM, Williams CD, Smith LP, Purcell S, Goodman LR. Oral medroxyprogesterone acetate for the use of ovulation suppression in in vitro fertilization: a cohort trial. Fertil Steril. 2024 May;121(5):806-813.

Pacific Northwest Fertility

