

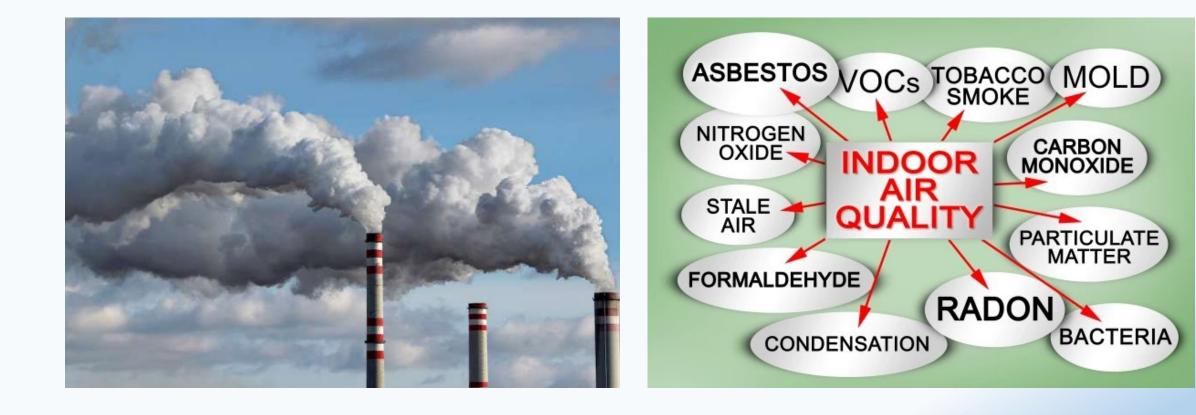
Clearing the Air: Does Air Quality Matter?

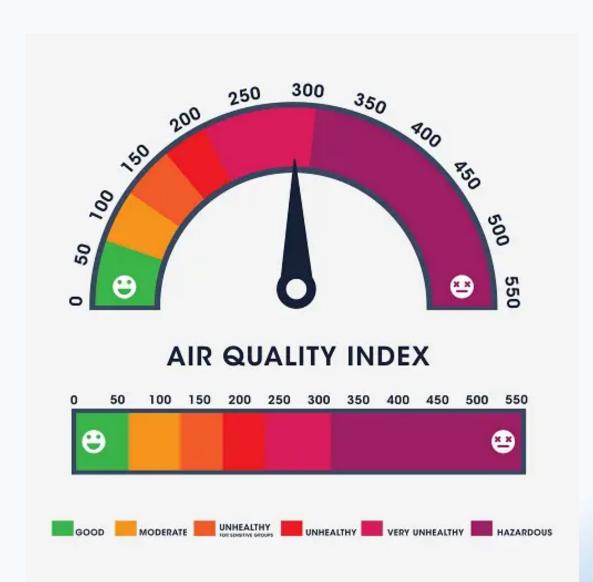
Sangita Jindal, PhD, HCLD Professor & IVF Lab Director

Albert Einstein College of Medicine, Bronx NY Montefiore's Institute for Reproductive Medicine and Health ASRM Board of Directors, Publications Committee Immediate Past President SART

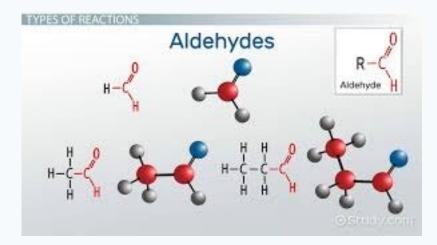
Disclosures

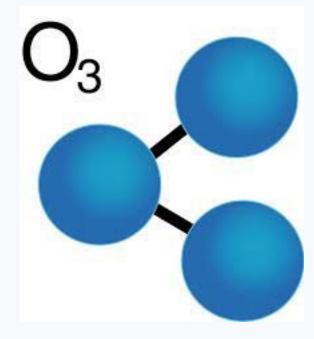
• Nothing to Disclose




Learning Objectives

- List Sources of air pollution in the lab
- Define what engineering controls contribute to clean lab air
- Apply good laboratory practice ensures clean lab air
- Practice Measuring lab air & associations with lab procedures





Chemical Sources of Lab Contamination

Ē

Sources of Lab Bioburden

Ļ

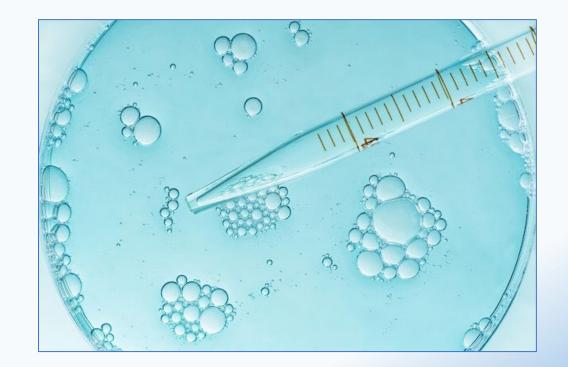
Lab Contaminant Source #1: Foot Traffic

- Lab staff & visitors
- 1 B Human skin cells shed daily
- >10 M bacteria/cm² human hand
- Dust is skin cells & bacteria

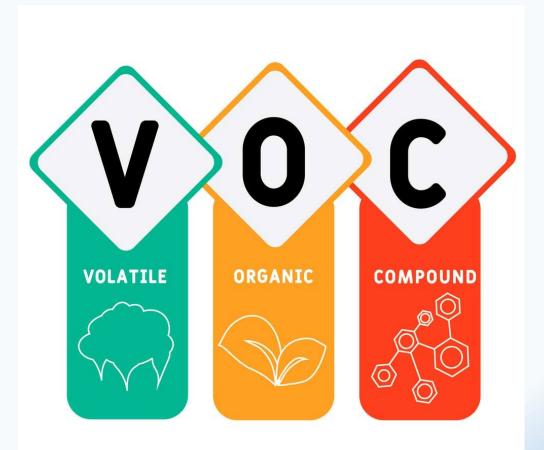
• Aerosolized viruses such as COVID-19

Lab Contaminant Source #2: Culture Conditions

• Oil


Ę

- Media, reagents, supplements
- Single-use plastic ware



Lab Contaminant Source #3: Patients

- Biological fluids from female & male
- Bacteria, fungus, viruses
- Bacteria is a killer, fungi can be washed out

Lab Contaminant Source #4: VOCs

Article

Cairo consensus on the IVF laboratory environment and air quality: report of an expert meeting

D Mortimer^a,*, J Cohen^b, ST Mortimer^a, M Fawzy^c, DH McCulloh^d, DE Morbeck^e, X Pollet-Villard^f, RT Mansour^g, DR Brison^h, A Doshiⁱ, JC Harper^j, JE Swain^k, AV Gilligan^l

Typical Organic Contaminants in ART Labs

F

Table 3 – Odour thresholds of organic contaminants typically found in assisted reproduction technology laboratories

Organic compound	Geometric mean AIHA	Comment
Ethanol (ethyl alcohol)	18–100 ppm	Most common VOC in ART laboratories.
Isopropyl alcohol	19–43 ppm	Second most commonly
(2-propanol)		found VOC.
Acetone (2-propanone)	62–130 ppm	
Propene (propylene)	23–68 ppm	Plastic.
Hexamethylcyclotrisiloxane	No data	Silicone from gaskets.
Acetonitrile (methyl cyanide)	1160 ppm	Plastics.
Formaldehyde	0.03–9970 ppm	
Acetaldehyde	0.067 ppm	
d-Limonene	0.5 ppm	Scent of lemon.
α -Pinene	0.005 ppm	Scent of pine.

AIHA, American Industrial Hygiene Association, ART, assisted reproduction technology; VOC, volatile organic compound. Mortimer et al., 2018

VOCs Mechanism of Action

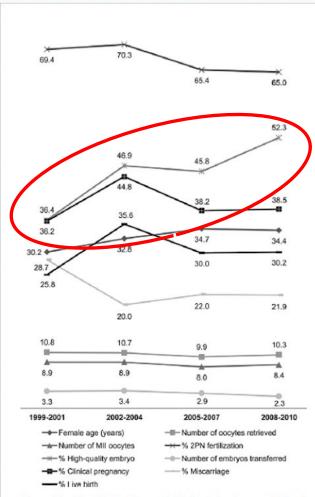
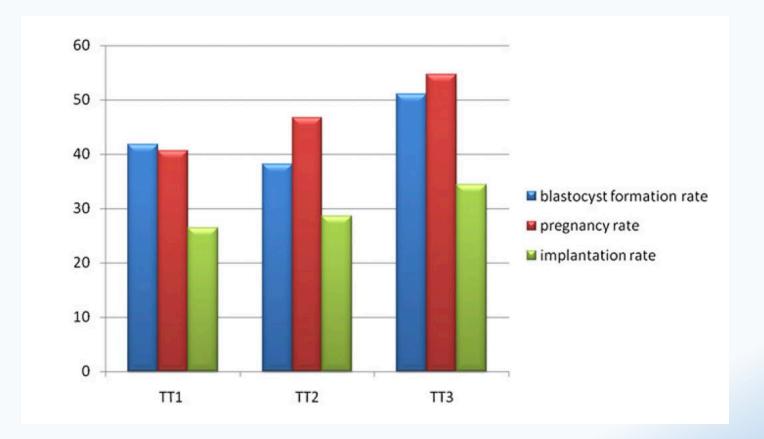
- Numerous studies showing association of high VOC levels with impaired embryo development
- VOCs are both aqueous and oil soluble
- VOCs can attach directly to DNA during embryo development
- Early studies showed lower clinical pregnancy rates were associated with high VOC levels

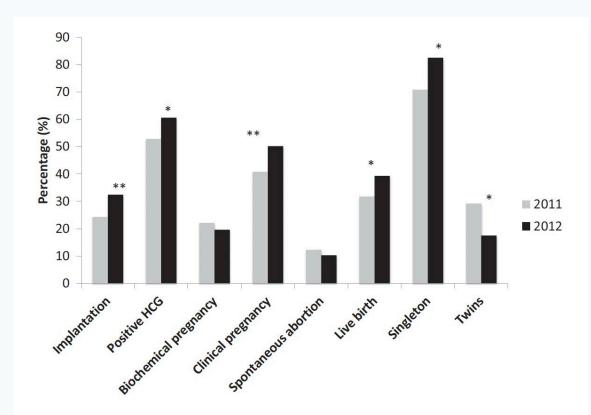
Studies of Lab Air and ART

Reference	Year of publication	Study design	Location/population	Method	Main outcome
Cohen et al.	1997	Descriptive VOC quantitative levels.	IVF laboratory.	Air sampling VOCs/aldehyde.	High VOC levels found in laboratory air and inside incubators.
Schimmel et al.	1997	Descriptive VOC quantitative levels.	IVF laboratory and gas cylinders.	Gas cylinders VOCs/aldehyde.	Varying levels of VOCs/reduction with activated carbon/ KMn04.
Hall et al.	1998	Observational analytic cohort.	In-vitro cultured mouse embryos	Air sampling Acrolein bioassay.	Embryo development affected .
Mayer et al.	1999	Prospective randomized crossover.	Human treatment cycles (n = 110).	Incubators with and without filters.	Increased pregnancy rate with filters.
Boone et al.	1999	Observational analytic cohort.	Human couples (n = 275).	Centralized particle filtration.	Reduced particulates, improved embryo development.
Worrilow et al.	2001	Descriptive qualitative.	New IVF laboratory.	Central HVAC/ VOC filtration.	Significant reduction in particulates with the new HVAC system to achieve a US Fed Standard class 100 cleanroom (equivalent to ISO 14644-1 Class 5).
Worrilow et al.	2002	Observational analytic cross- sectional.	IVF cycles 2 year.	Outside/inside sampling.	Seasonal VOC variation affecting pregnancy rates.
Esteves et al.	2004	Observational analytic cohort.	Human ICSI cycles (n = 468).	Two laboratories: conventional versus HVAC/filter.	Improved embryo development, increased pregnancy/ decreased miscarriage rates.
von Wyl et al.	2004	Descriptive Qualitative.	IVF laboratory air sampling.	Old/new laboratory particle filter.	Reduced particulates and VOC.
Esteves et al.	2006	Observational analytic cohort.	Human male factor ICSI cycles (n = 399).	Two laboratories: conventional versus HVAC/filter.	Improved embryo development, increased pregnancy/ decreased miscarriage rates.
Knaggs et al.	2007	Observational analytic cohort.	IVF cohort.	Key performance indicators study/EU Tissues and Cells Directive.	Increased pregnancy and implantation rates.
Merton et al.	2007	Randomized controlled trial.	Bovine.	Incubator filter.	No effect on embryo development, slight increase in pregnancy rate.
Souza et al.	2009	Observational analytic cohort study.	Human ICSI cycles (n = 123).	Comparing class 8 and class 5 incubators.	No differences.
Khoudja et al.	2013	Descriptive qualitative observational analytic cohort.	Human IVF-ICSI cycles (n = 1403).	Standalone filtration versus novel Landson system.	Significant improvements in laboratory performance.
Esteves et al.	2013	Observational analytic cohort.	Human ICSI cycles in ISO 5 clean room laboratory (n = 2060), cf 255 ICSI cycles in older-style laboratory.	New ISO 5 clean room laboratory compared with older-style laboratory.	Increased proportion of high quality embryos on day 3.
Munch et al.	2015	Observational analytic cohort.	Human fresh IVF cycles (n = 524) and frozen embryo transfer cycles (n = 156).	Laboratory with and without carbon filter.	Decline in laboratory performance when filter removed
Heitmann et al.	2015	Descriptive qualitative observational analytic cohort.	Human IVF-ICSI cycles (n = 820).	Old laboratory with standalone filter/new laboratory with HVAC and central filter .	Decreased VOC; Improvements in laboratory performance.

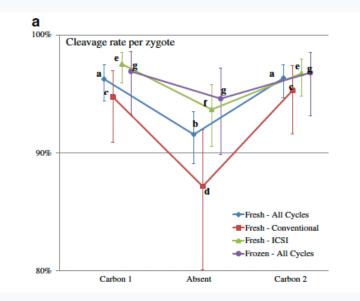
Mortimer et al., 2018

Ē

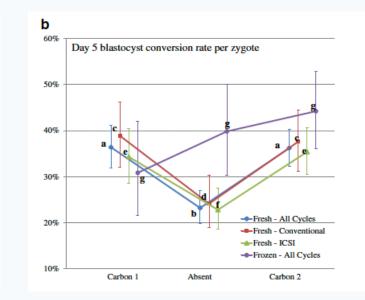



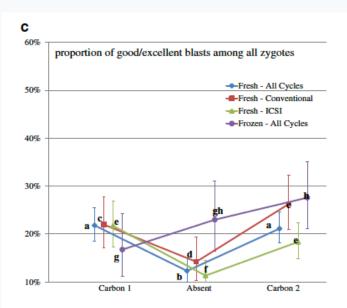

Figure 3 Stratified data analysis by triennium periods of intracytoplasmic sperm injection cycles performed at standard IVF facilities (1999–2001) and cleanroom facilities (2002–2010). Values are expressed as means. MII = metaphase II; 2PN = two pronuclei.

Esteves and Bento, 2013


Khoudja et al, 2013

Ę




Figure 1 Comparison of IVF cycle outcomes per embryo transfer by cycle year (2011 versus 2012). Implantation reported as average implantation per patient. Chi-squared test was used for analysis. *P < 0.05; **P < 0.01.

Heitmann et al, 2015

Ē

Munch et al, 2015

Modeling VOCs in the IVF Lab

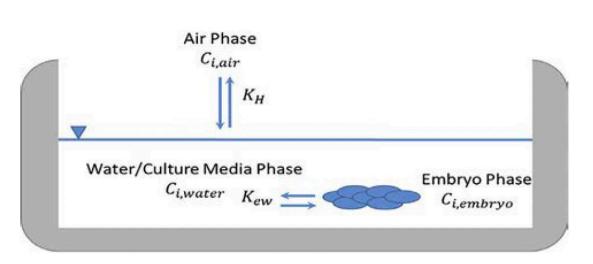
54 RBMO VOLUME 46 ISSUE 1 2023

ARTICLE

Modelling the equilibrium partitioning of low concentrations of airborne volatile organic compounds in human IVF laboratories

BIOGRAPHY

John Fox, PhD, PE, is an associate professor in the Department of Civil and Environmental Engineering at Lehigh University, Bethlehem, PA. John received his BS in civil engineering from the Virginia Military Institute and earned his MS and PhD in environmental engineering from the Pennsylvania State University.


John T. Fox^{1,*}, Pan Ni¹, Alicia R. Urrutia², Huey T. Huynh², Kathryn C. Worrilow²

Fox et al, 2023

VOCs in Air-Oil-Water-Embryo

58 RBMO VOLUME 46 ISSUE 1 2023

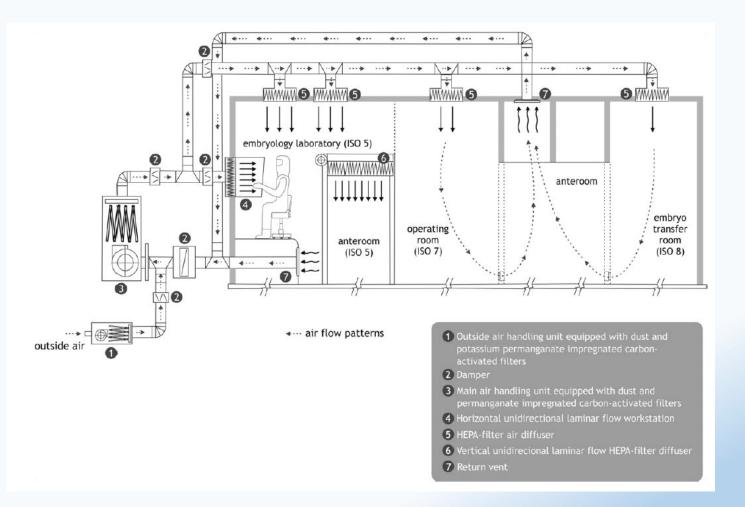
Ę

FIGURE 1 Air-water/culture model: when culture media is mixed or exposed to air, ppb concentration VOC in the air phase will partition into the water/culture media phase, governed by Henry's law ($K_{\rm H}$) and organic compounds now in the water/culture media phase are defined as the concentration, $C_{\rm i}$, where 'i' is chemical in the culture media. $K_{\rm ew}$ = embryo-water partitioning coefficient.

Fox et al, 2023

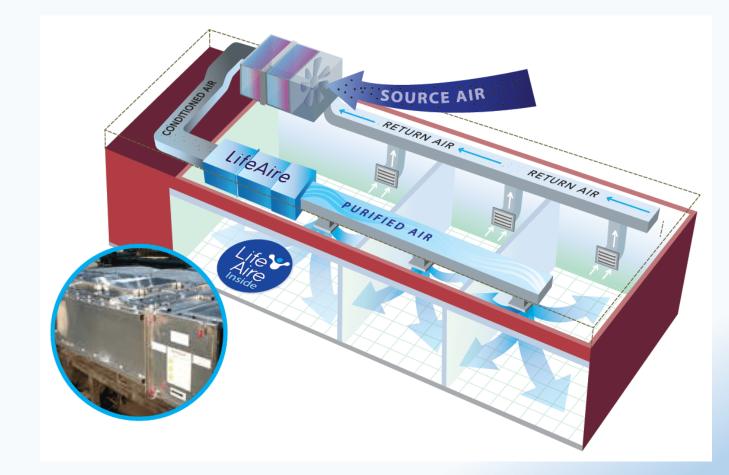

Engineering Controls for Lab Air Quality

- Air filtration: pre-filters, activated carbon and potassium permanganate, HEPA
- Fresh air with majority recirculated, clean, warm air
- Positive pressure
- Minimum # of air exchanges per hour



Filtration for Lab Air Quality

- pre-filters
- activated carbon and potassium permanganate
- HEPA filter: high efficiency particulate air filter


Air Handling System Design

Esteves and Bento, 2013

Ę

Life Aire System

Engineering Maintenance for Lab Air Quality

- Test air handling system for pressure & balance
- Change filters as per schedule
- Test filter substrate to confirm filter life

Good Lab Practice Strategies for Lab Air Quality

- Adopt a clean room philosophy
- Testing: MEA, sperm bioassay
- Checklists, checklists, checklists

Checklists, Checklists, Checklists

- Cognitive net that catches mental errors of memory, attention and thoroughness
- Allow for tracking & reliable communication

Good checklist are precise, efficient, easy to use, practical

Sangita's Clean Lab Maintenance Checklist

- Hygiene Did you start by washing your hands?
- Cleaning Did you finish by wiping down surfaces?
- Air Flow Are laminar flow hoods on during the day?
- Waste Removal Are regular & biological waste removed?
- Protocols Are detailed shutdown protocols followed?

Good Lab Practice for Lab Air Quality

- Frequent hand washing
- Use high quality distilled water
- Use 6% hydrogen peroxide to clean surfaces
- Laminar flow hoods
- Bi-annual cleaning of lab

Good Physical Plant Controls for Lab Air Quality

- Lab is in protected area & has secure access
- Maintain scrub discipline
- Sticky or tacky mats at lab entrance
- Be attentive to sterile technique
- Supply unpacking & storage

• No painting, renovation, repair, paving, vibrations

Good QC & QA for Lab Air Quality

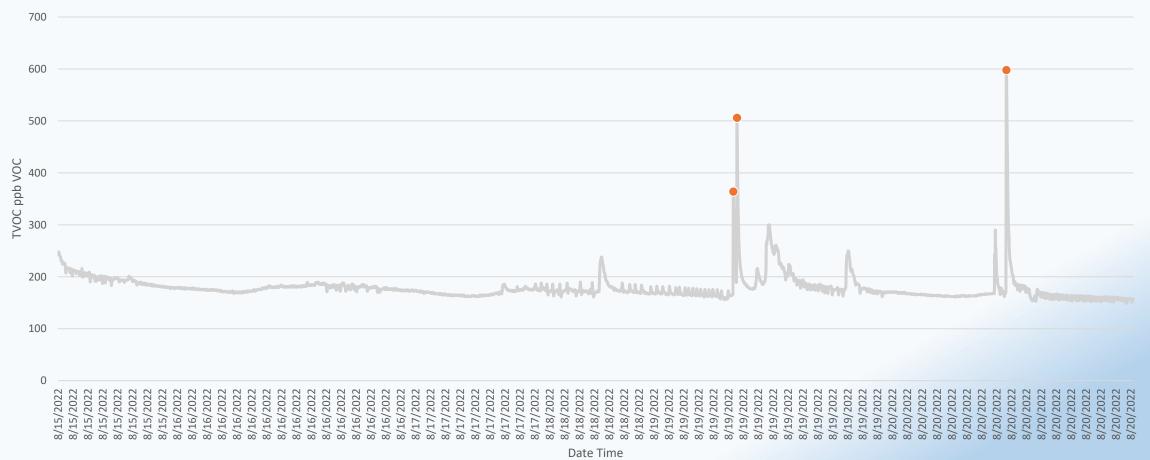
- Reduce hazardous materials, remove waste daily
- Schedule & maintain equipment QC & QA
- Change water bottles, H₂O₂ bottles regularly
- Any changes to products? Evaluate before use.
- Cell phone use!

Measuring VOCs in the IVF Lab

Ē

File Log Probe	View		
туос	18 ppb		
Carbon Dioxide	865 ppm		
Hydrogen Sulfide	0.21 ppm		
Carbon Monoxide	0.0 ppm		
Temperature	24.7 ℃		
Relative Humidity	34.6 %RH		

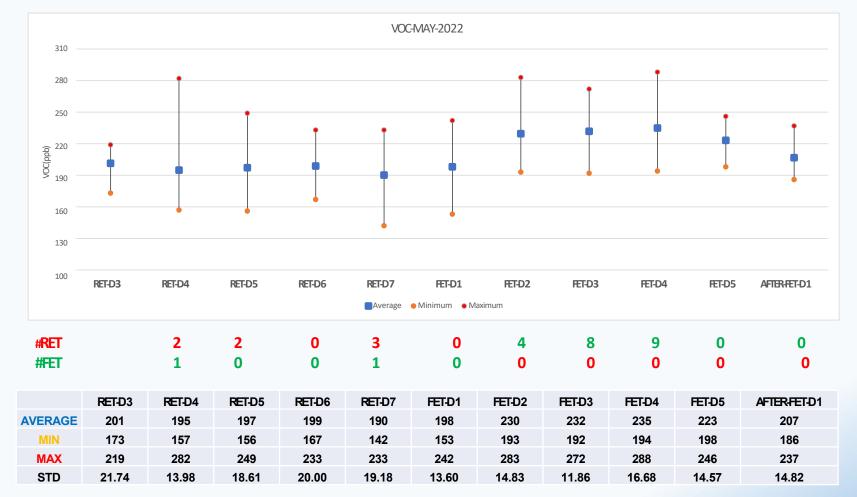
VOCs Limits in the IVF Lab

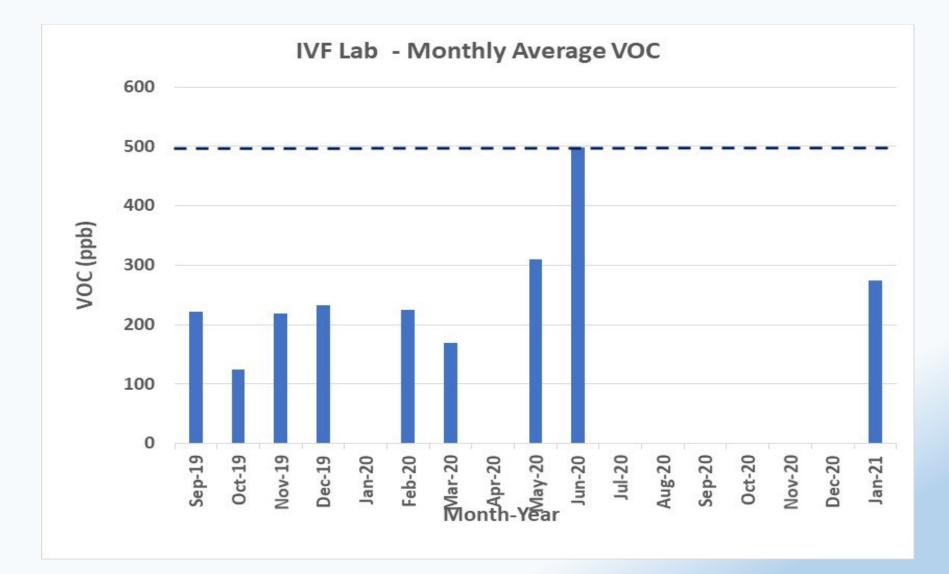

VOCs. Total VOCs less than 500 μ g/m³ (~400–800 ppb total VOC, depending on molecular species); less than 5 μ g/m³ aldehydes.

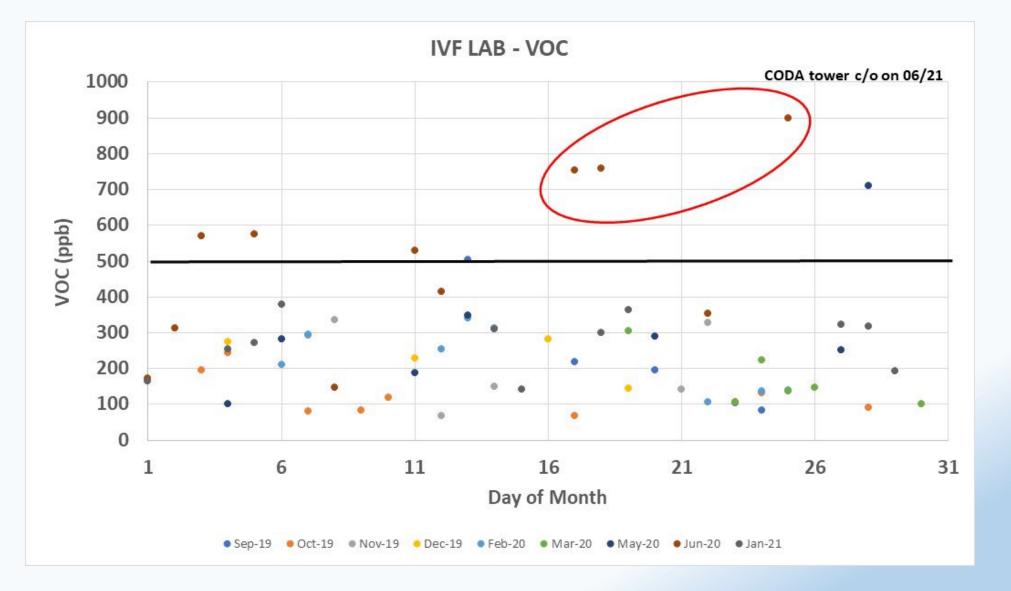
Mortimer et al., 2018


They Paved Paradise in NY

Ē


'TVOC ppb' has outliers at Time of Paving.




Santa Barbara Patient Series

Miami Patient Series

IVF LAB - VOC

IVF KPI	MATURITY (%)	FERTILIZATION RATE (%)	BLASTOCYST RATE (%)	EUPLOID RATE (%)
1 st QUARTER RESULTS	455/577	314/422	239/334	89/179
(1/1/21 - 3/31/21)	(79%)	(74%)	(72%)	(50%)
6/13-7/17/21 OUTCOMES	219/251	147/219	104/147	18/33
(n=18 cycles)	(87.3%)	(67.1%)*	(70.7%)	(54.5%)

NB: 6/13-7/17/21 outcomes only for IVF/Fz all patients. Egg cryo/donor egg cycles not included

* Borderline significantly different (p=0.52)

In Summary

- Maintain lab air quality for optimized IVF outcomes
- Most pollutants are aldehydes, VOCs, biologicals from staff, patients
- Use hardware engineering controls to HVAC
- Use software controls of rigorous QC & QA
- Measure VOCs, temperature, humidity
- Track VOC data to lab outcomes & KPIs

Thank You

www.sangitajindal.com

sangita.k.jindal@gmail.com | sjindal@montefiore.org