

eview imaging diagnosis of adenomyosis how this impacts therapy

scuss new investigation in adenomyosi how it changes our conception of the

scuss medical therapies for adenomyosis

ADENOMYOSIS

CURRENT AND FUTURE TREATMENTS

Elizabeth A. (Ebbie) Stewart M.D.

Society for Reproductive Investigation March 17,2022 Denver CO

DISCLOSURES (24 MONTHS)

Consulting Fee (e.g., Advisory Board):
 Analyn, AbbVie

LEARNING OBJECTIVES

- To review imaging diagnosis of adenomyosis and how this impacts therapy
- To discuss new investigation in adenomyosis and how it changes our conception of the disease
- To discuss medical therapies for adenomyosis
- To review surgical and interventional therapies

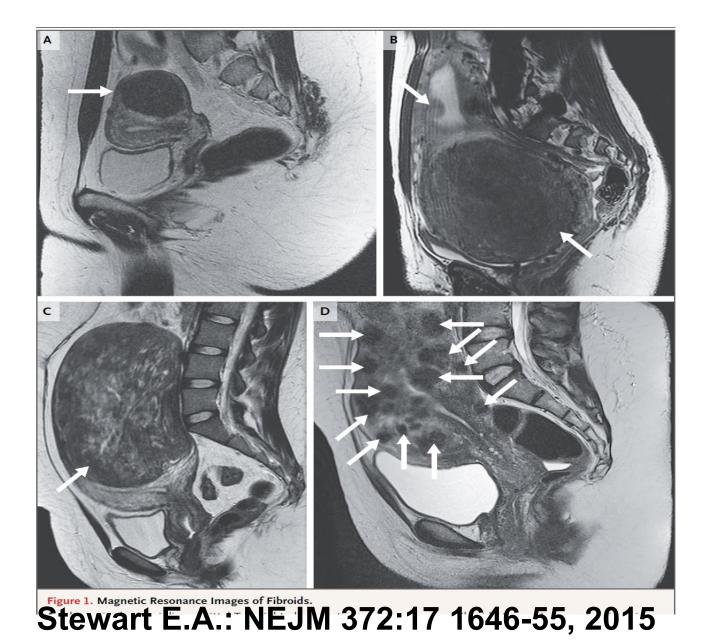
IMAGING GIVES US AN ALTERNATE WAY TO DIAGNOSE ADENOMYOSIS

Adenomyosis is like Weeds: Once you start looking, it is everywhere

IN THE GARDEN

The Dirty Secret About Weeding

The most experienced gardeners know that you just have to keep doing it. They know something else, too: It's easier if you can identify the enemy.



NY Times May 8, 2020

Image based diagnosis changes everything

If we require surgical diagnosis, it will be difficult to understand the role of adenomyosis in:

- Young women with chronic pelvic pain
- Infertility
- Recurrent pregnancy loss
- Recurrent implantation failure

We don't say that any of these women have "presumed fibroids." We say they have uterine fibroids and proceed to treat them in a variety of ways knowing that in a small number of cases there will be other pathology.

Why can't we adopt the same approach to adenomyosis?

MUSA CRITERIA FOR ADENOMYOSIS

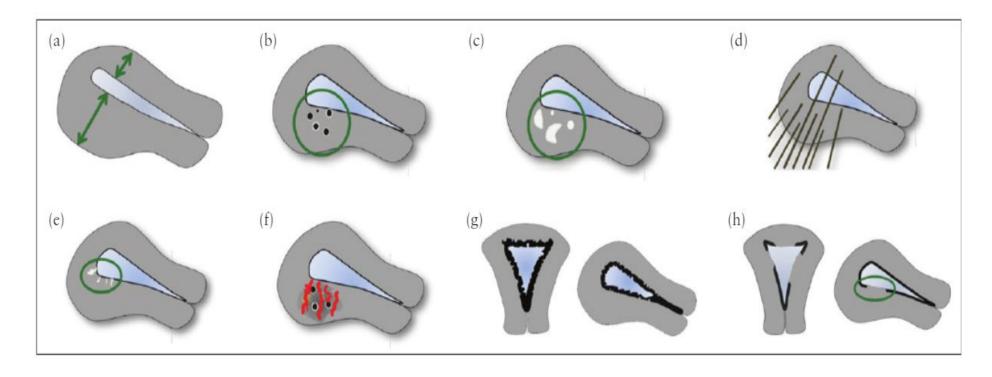


Figure 10 Schematic drawings illustrating the ultrasound features considered currently to be typical of adenomyosis: asymmetrical thickening (a), cysts (b), hyperechoic islands (c), fan-shaped shadowing (d), echogenic subendometrial lines and buds (e), translesional vascularity (f), irregular junctional zone (g) and interrupted junctional zone (h).

Van den Bosch et al. US Obs Gyn 46: 284-98 2015

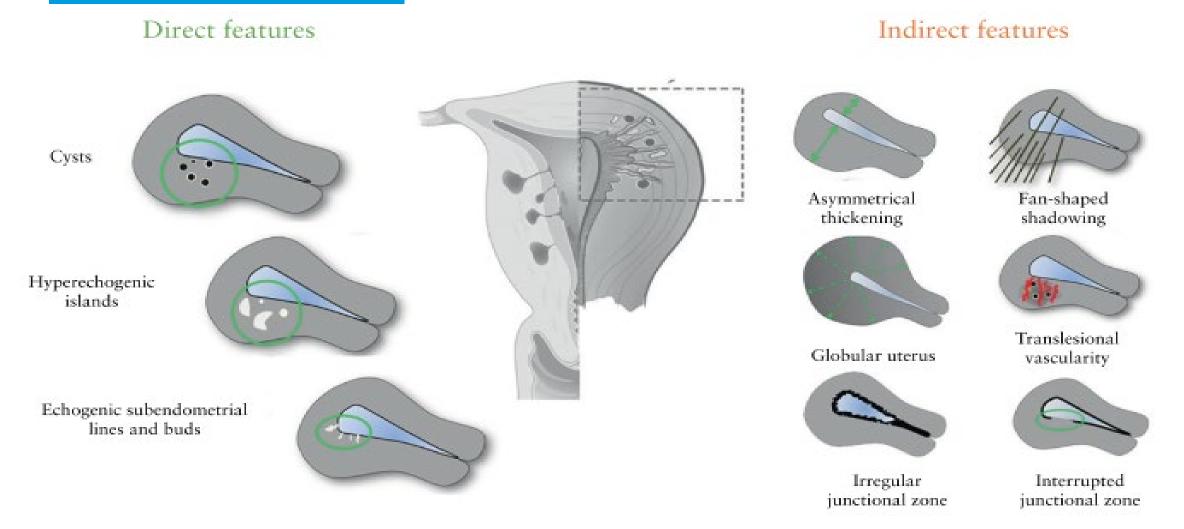
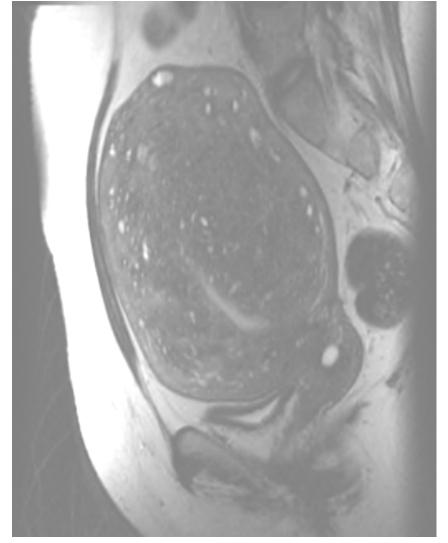
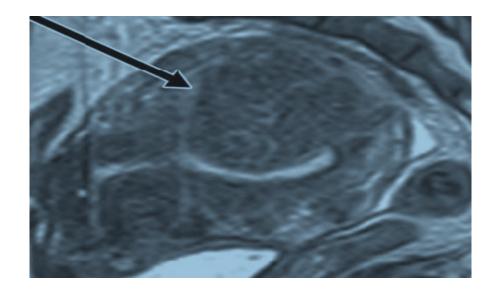



Figure 5 Schematic representation of direct and indirect Morphological Uterus Sonographic Assessment (MUSA) features of uterine adenomyosis (not endometriosis), according to modified Delphi procedure. Adapted from Van den Bosch et al.⁶.

Harmsen et al. US Obs Gyn 60: 118-31 2022


MYOMETRIAL IMAGING: CHARACTERISTICS OF ADENOMYOSIS

- Global uterine enlargement
- Cystic spaces in myometrium
- Asymmetric wall thickening
- Heterogeneity
- Obscuring of endometrial/ myometrial border



OTHER IMAGING CHARACTERISTICS OF ADENOMYOSIS

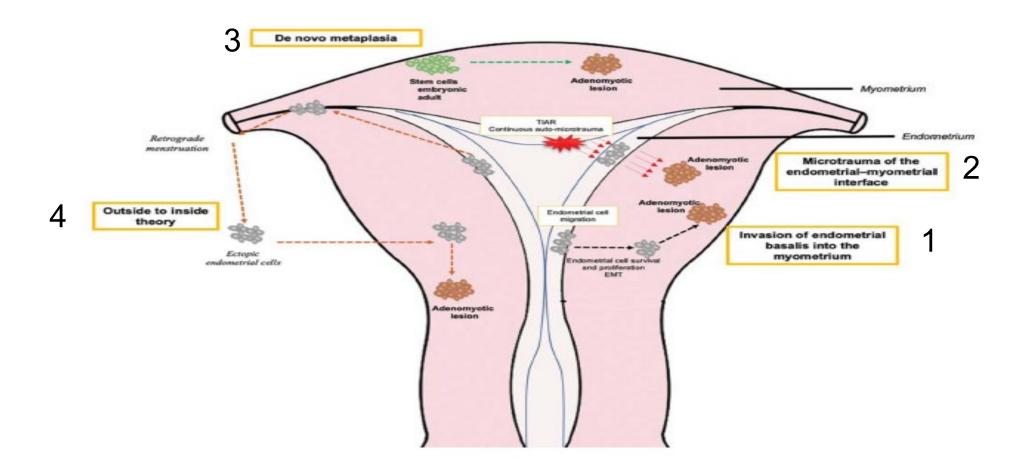
Thickening of junctional zone

 Subendometrial linear striations

2

NEW INVESTIGATION

ADENOMYOSIS: SYMPTOMS


- Heavy Menstrual Bleeding
- Pelvic Pain
- Possible Fertility Impairment

ADENOMYOSIS: CLASSIC RISK FACTORS

- Parity
- Uterine Surgeries

If adenomyosis is only diagnosed by hysterectomy, are we just describing the group of women willing to undergo hysterectomy?

THEORIES OF MECHANISMS OF ADENOMYOSIS

Zhai et al. Semin Repro Med 2020: 38:129-143

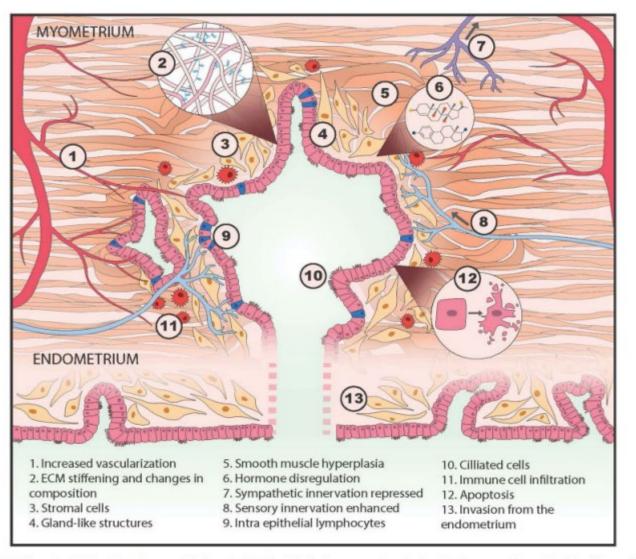


Fig. 2 Conceptualization of an adenomyosis lesion, showing the biological components and pathological processes to consider in building an in vitro model.

MEDICAL THERAPIES FOR ADENOMYOSIS

CAVEATS RELEVANT TO THERAPY

- There are few high-quality studies of adenomyosis
- Of studies of adenomyosis, many participants have long-standing disease that may be more resistant to therapy
- Much data comes from studies of other diseases where concomitant adenomyosis is not an exclusion
- There is little phenotyping of adenomyosis

WE NEED CLINICAL TRIALS FOR ADENOMYOSIS

Hormonal Therapies Especially the Levonorgestrel IUDs are Effective for HMB and Pain

Contraceptive Steroids, PRMs and GnRH analogs are all effective treatments for Bleeding and Pain

Table 1 Summary of efficacy of medical treatments for adenomyosis

Class of agent	НМВ	PM or PP	Fertility	General comments				
Treatments that modulate gonadal steroids								
Contraceptive steroids	LNG-IUS most effective, PBAC score reduced in all patients to <100, amenorrhea rate 25% 10,13	LNG-IUS most effective, 45–77.4% reduction in mean VAS ^{9–14}	No available efficacy data	Also provides contraception				
Aromatase inhibitors	omatase inhibitors Subjective improvement in 60% of those with HMB ²³		No available efficacy data					
Progesterone receptor modulators	Reduction from "heavy" PBAC to "controlled" PBAC in 90.2% ²⁶	56–92% reduction in mean VAS ^{26,28}	No available efficacy data	Not available currently in the United States and treatment halted in rest of the world as of this writing				
Gonadotropin-releasing hormone receptor analogs	Subjective improvement in 100% of those with HMB and amenorrhea rate of 94.4% 18	52–100% reduction in mean VAS ^{18,34,35}	26.7% spontaneous pregnancy rate after treatment ³⁹	Current data primarily on depot formulations, new studies underway for oral agents				
Other therapeutic agents								
Dopamine agonists	33% reduction in mean PBAC ⁴⁹	50% reduction in mean VAS ⁴⁹	No available efficacy data					
Oxytocin antagonists	No available efficacy data	No available efficacy data	No available efficacy data					

Abbreviations: HMB, heavy menstrual bleeding; LNG-IUS, levonorgestrel-releasing intrauterine system; PBAC, pictorial bleeding assessment calculator; PM, painful menses; PP, pelvic pain; VAS, visual analog scale.

PAIN IMPROVED IN RCT OF DINOGEST

Characteristic	Dienogest (n = 34)	Placebo (n = 33)	Pvalue
Age (y) ^a	37.3 ± 7.9	37.4 ± 6.6	.816
Weight (kg) ^a	56.9 ± 7.7	54.2 ± 7.1	.132
BMI (kg/m²) ^a	22.2 ± 3.2	21.4 ± 2.4	.415
Menstrual cycle length (d) ^a	28.4 ± 4.1	28.1 ± 4.7	.835
Hemoglobin level (g/dL)			
Baseline ^a	12.8 ± 1.3	12.3 ± 1.6	.177
At EOT	13.2 ± 0.7	12.8 ± 1.4	
Number of partus ^a	1.2 ± 1.2	1.2 ± 1.1	.845
Pain score			
Baseline ^a	4.6 ± 1.1	4.8 ± 1.0	.298
Change at 16 wk ^b	-3.8 ± 1.9	-1.4 ± 1.8	< .001
Pain severity score			
Baseline ^a	2.4 ± 0.5	2.5 ± 0.5	.397
Change at 16 wkb	-1.9 ± 1.0	-0.6 ± 0.8	< .001
Analgesics usage score			
Baseline ^a	2.1 ± 1.0	2.3 ± 0.8	.470
Change at 16 wkb	-1.9 ± 1.2	-0.8 ± 1.3	< .001
Visual analogue scale (mm)			
Baseline ^a	66.3 ± 19.1	69.0 ± 20.6	.518
Change at 16 wkb	-58.4 ± 23.6	-20.6 ± 23.6	< .001
Uterine size			
Baseline (cm³)a		93.3 ± 68.3	
Reduction at EOT (%) ^b	20.0 ± 28.8	9.6 ± 23.0	.103

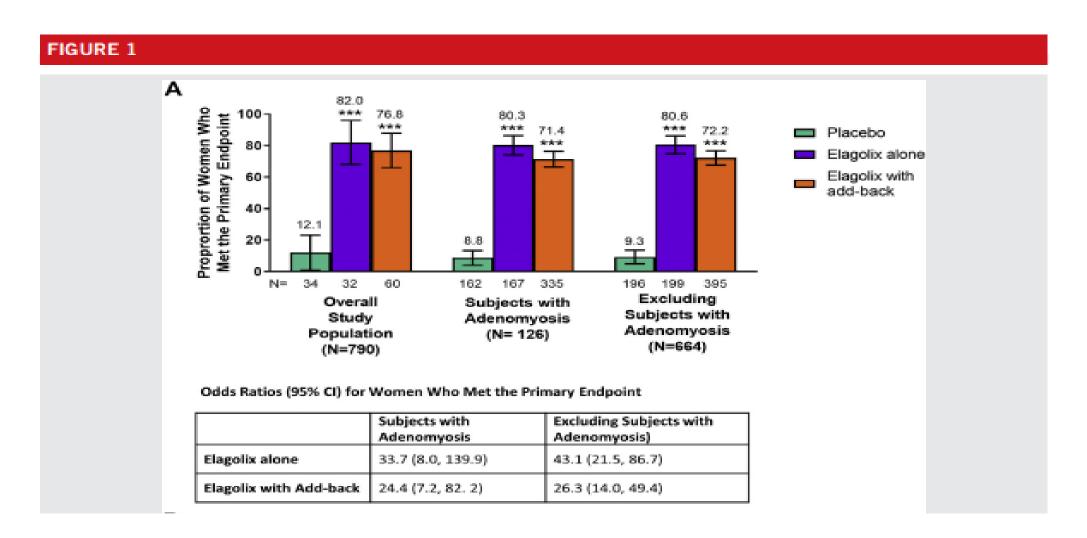
Osuga et al. Fert Steril 108: 673-8, 2017

Contraceptive Steroids, PRMs and GnRH analogs are all effective treatments for Bleeding and Pain

Table 1 Summary of efficacy of medical treatments for adenomyosis

Class of agent	НМВ	PM or PP	Fertility	General comments	
Treatments that modulate gona	idal steroids	·		·	
Contraceptive steroids	LNG-IUS most effective, PBAC score reduced in all patients to <100, amenorrhea rate 25% ^{10,13}	LNG-IUS most effective, 45–77.4% reduction in mean VAS ^{9–14}	No available efficacy data	Also provides contraception	
Aromatase inhibitors	Subjective improvement in 60% of those with HMB ²³	Subjective improvement in 57.1% with PM and 83.3% with PP ²³	No available efficacy data		
Progesterone receptor modulators	Reduction from "heavy" PBAC to "controlled" PBAC in 90.2% ²⁶	56–92% reduction in mean VAS ^{26,28}	No available efficacy data	Not available currently in the United States and treatment halted in rest of the world as of this writing	
Gonadotropin-releasing hormone receptor analogs	Subjective improvement in 100% of those with HMB and amenorrhea rate of 94.4% 18	52–100% reduction in mean VAS ^{18,34,35}	26.7% spontaneous pregnancy rate after treatment ³⁹	Current data primarily on depot formulations, new studies underway for oral agents	
Other therapeutic agents					
Dopamine agonists	33% reduction in mean PBAC ⁴⁹	50% reduction in mean VAS ⁴⁹	No available efficacy data		
Oxytocin antagonists	No available efficacy data	No available efficacy data	No available efficacy data		

Abbreviations: HMB, heavy menstrual bleeding; LNG-IUS, levonorgestrel-releasing intrauterine system; PBAC, pictorial bleeding assessment calculator; PM, painful menses; PP, pelvic pain; VAS, visual analog scale.


FDA APPROVAL OF ORAL GNRH ANTAGONISTS COMBINATION THERAPY

FOR TREATMENT OF FIBROID-RELATED HMB

 Elagolix 300 mg/Estradiol 1 mg/ NETA 0.5 mg q AM and elagolix 300 q PM -Approved May 2020

 Relugolix 40 mg/Estradiol 1 mg/ NETA 0.5 mg qd -Approved May 2021

CONCOMITANT ADENOMYOSIS DOES NOT DECREASE EFFICACY FOR HMB OF ELAGOLIX

PROLACTIN AND UTERUS

- Animal model of adenomyosis with pituitary graft
- Both ligand and receptor in human uterus
- PRL acts as smooth muscle mitogen
- Regulation of uterine prolactin with Ru486 and gonadotropins

TWO MULTIVARIATE MODELS FOR ADENOMYOSIS VS. FIBROIDS SUGGEST LINKAGE TO PROLACTIN

	Model 1: Symptoms OR (95% CI)	Model 2: Uterine weight >150 g OR (95% CI)
Age	1.4 (1.02–1.9)	0.9 (0.4–1.7)
History of Depression	3.3 (1.7–6.4)	3.8 (1.2–12.2)
History of Endometriosis	2.8 (0.8–10.1)	8.8 (1.4–56.1)
History of Uterine Surgery	1.4 (0.7–2.6)	0.7 (0.2–2.1)
Pelvic Pain	2.8 (1.4–5.6)	2.3 (0.7–7.6)

Taran et al. Fertil Steril 94: 1223-8, 2010

MENSTRUAL BLEEDING, PAIN AND QOL IMPROVES WITH VAGINAL BROMOCRIPTINE: PILOT STUDY

	Baseline	3 Mo	6 Mo	9 Mo (3 Mo after Rx)
PBLAC	349	264*	242*	233*
	(292- 645)	(181-324)	(76-384)	(149- 515)
AMCOQ	51	38*	35*	35*
	(40-61)	(25-52)	(21-48)	(24-47)
VAS	5	3*	2.2*	2.5 *
	(4, 8.3)	(1.6, 4)	(0.4, 6.3)	(0.4, 5)
UFS-QOL SSS	60	44*	44*	44 *
	(44, 72)	(19, 59)	(28, 59)	(25, 56)
UFS-QOL HR	57*	72*	66*	72*
QOL Total	(37, 63)	(45, 88)	(52, 85)	(51, 85)

Andersson et al. Acta ObGyn Scand 2019.10:1341-50

Contents lists available at ScienceDirect

European Journal of Obstetrics & Gynecology and Reproductive Biology

journal homepage: www.elsevier.com/locate/ejogrb

Full length article

Vaginal bromocriptine for treatment of adenomyosis: Impact on magnetic resonance imaging and transvaginal ultrasound

Johanna K Andersson^{a,*}, Raffaella Pozzi Mucelli^{b,c}, Elisabeth Epstein^d, Elizabeth A Stewart^e, Kristina Gemzell-Danielsson^f

Fig. 4. Measurement of 3 D Junctional Zone.

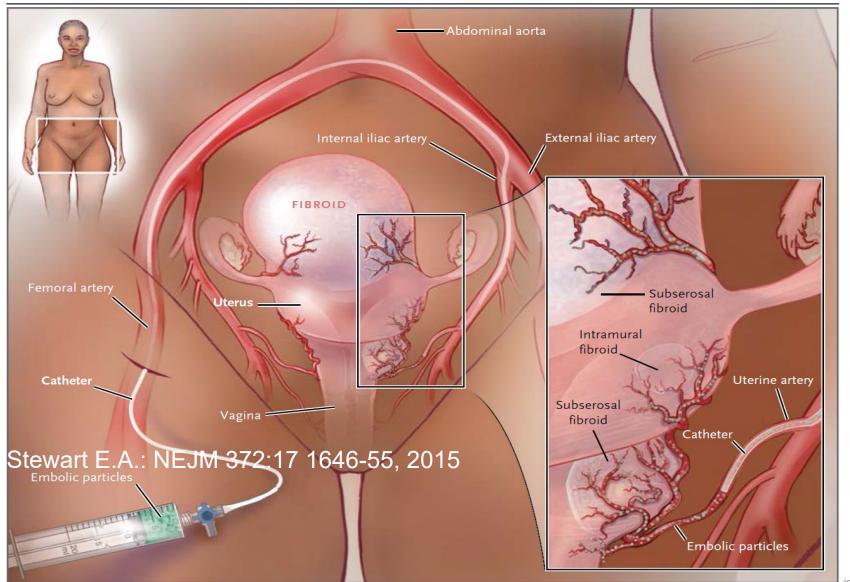
2020.254:38-43

Significant decrease in junctional zone thickness and wall symmetry following bromocriptine therapy

Department of Women's and Children's Health, Karolinska Institutet and Liljeholmens gynecological clinic, Stockholm, Sweden

^b Department of Abdominal Radiology, Karolinska University Hospital, Stockholm, Sweden

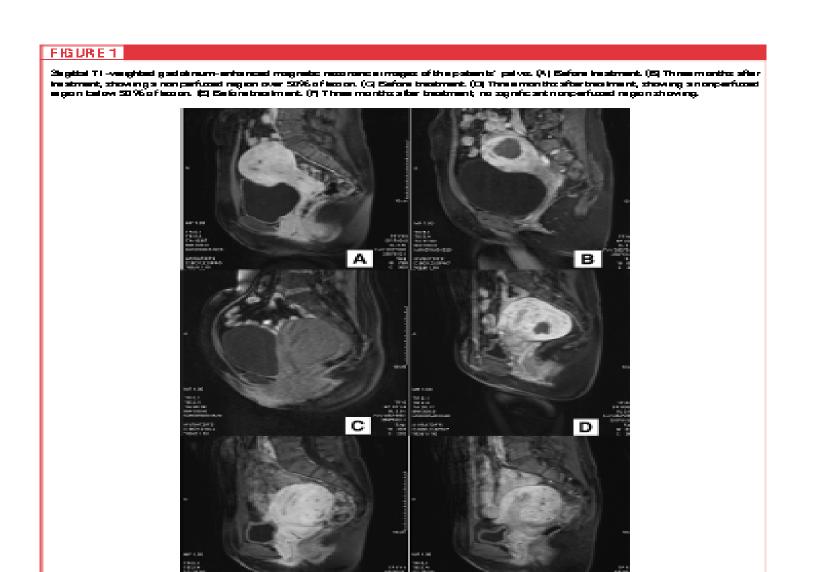
^c Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden


^d Department of Clinical Science and Education Karolinska Institutet, and Department of Obstetrics and Gynecology, Sodersjukhuset, Stockholm, Sweden

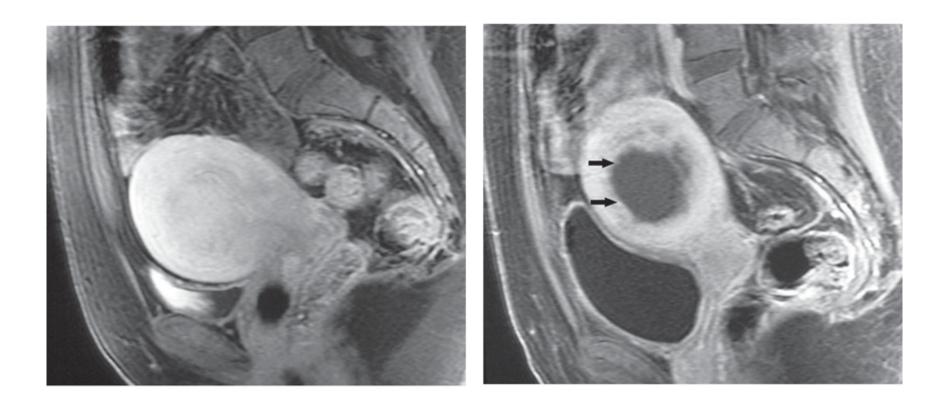
Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, MN, USA

f Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden

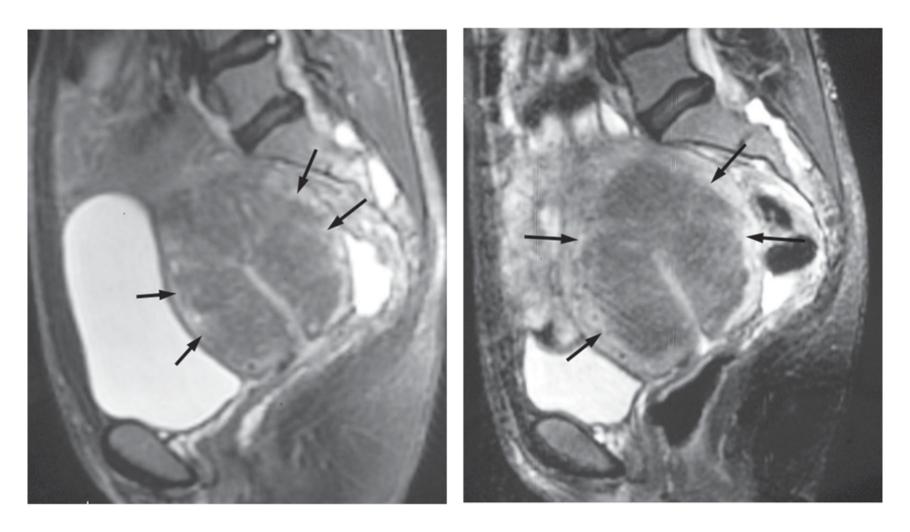
3 SURGICAL AND INTERVENTIONAL THERAPIES FOR ADENOMYOSIS


UTERINE ARTERY EMBOLIZATION

UTERINE ARTERY EMBOLIZATION FOR ADENOMYOSIS: OUTCOMES AT 5 YEARS

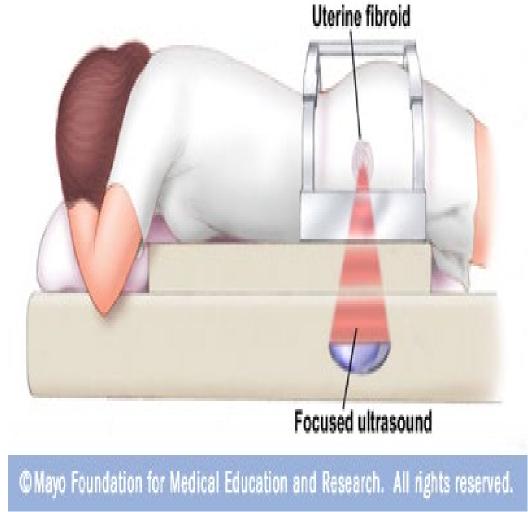

- 264 women treated, 195 followed for 5 years
- 70% women had improved painful menses and heavy menses
- Improvement greatest when there were hypervascular lesions

Zhou et al. PLoS One, 11 (11)2016


Story ordered address for all resigned. And Story SOUS.

Devascularization Day 4 following UAE

Pelage et al.: Radiology 234: 948-53, 2005


Junctional zone unchanged at 6 months

Pelage et al.: Radiology 234: 948-53, 2005

IMAGE-GUIDED FOCUSED ULTRASOUND TREATMENT

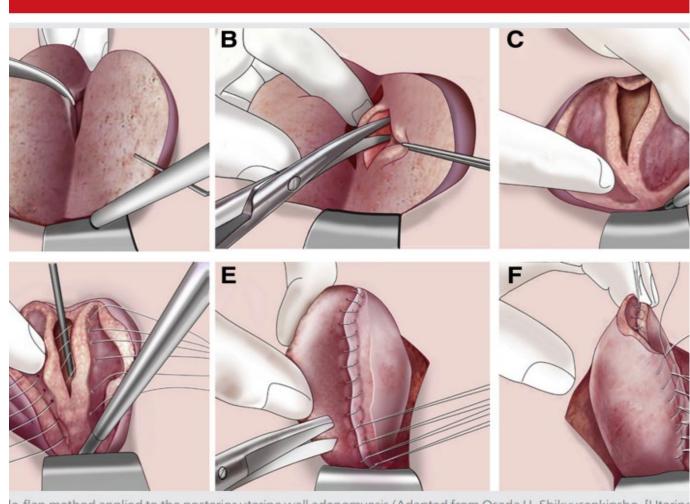
US-Guided HIFU

•208 women followed median 40 mo

•82 %had decreased dysmenorrhea and 71% were asymptomatic

 More complete treatment, older age and lower BMI predicted success

Liu et al.: Medicine 95 (3) e2443, 2016



Adenomyosis: Case series 6 months following MRgFUS

	Pre Rx	6 months	Р
SSS of UFS- QOL	48.4 ± 12.1	26.7 ± 13.5	0.0001
Uterine volume (cc³)	445 ± 296	417 ± 315	.0029
Junctional zone (mm)	45.9 ± 12.2	41.4 ± 15.3	0.0111

Fukunishi et al. JMIG 2008:15:571-9.

CONSERVATIVE SURGERY FOR FOCAL ADENOMYOSIS

le-flap method applied to the posterior uterine wall adenomyosis (Adapted from Osada H. Shikyusenkinsho. [Uterine en fujinka fukkukyoka-shujutsu. [Laparoscopy for gynecology: a comprehensive manual and procedure DVD]. Tokyo

omyosis and adenomyoma. Fertil Steril 2018.

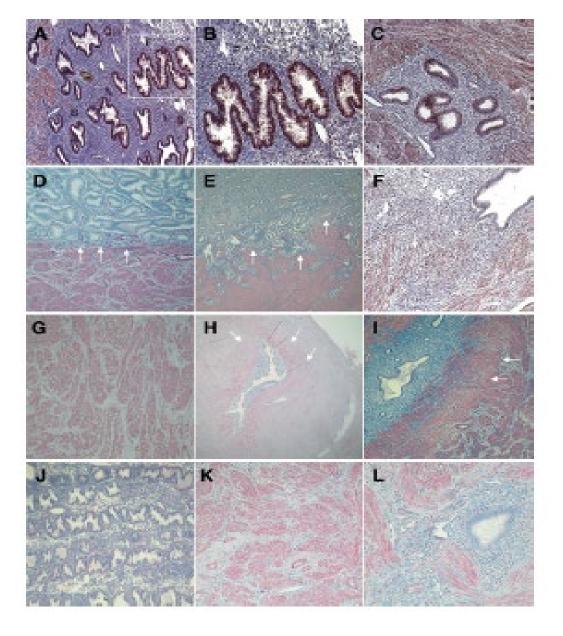
Even when performed by expert surgeons, the rate of uterine rupture in a future pregnancy appears to be 4% and has been reported to occur between 12 and 35 weeks of gestation. The rate of uterine rupture rate following classical cesarean section with labor is 2%.

The risk of uterine rupture following surgical resection is high

TABLE 2

Published cases of uterine ruptures after laparotomic and laparoscopic adenomyomectomy.

Author, year (ref.)	Patient age (y)	Operative method	Uterine incision	Contraceptive period (mo)	Modes of conception	rupture (wk)	Fetal number	Surgical treatment	Volume of bleeding (ml)	Fetal weight (g)	Fetal survival	Maternal survival
Yoshiki et al., 2004 (35)	NR	Laparotomic	Monopolar	NR	NR	26	Singleton	Preservation	NR	NR	Live	Live
Wada et al., 2006 (50)	33	Laparoscopic	Monopolar	12	IVF-ET	30	Twin	Preservation	2,600	1,585/1,545	Live	Live
Morimatsu et al., 2007 (46)	35	Laparoscopic	Monopolar	1	Spontaneous	28	Singleton	Preservation	2,560	1,356	Live	Live
Suginami et al., 2008 (11)	NR	NR	Laser knife	NR	NR	NR	Singleton	NR	NR	NR	NR	Live
Suginami et al., 2008 (11)	NR	NR	Laser knife	NR	NR	NR	Singleton	NR	NR	NR	NR	Live
Kasama et al., 2010 (51)	33	Laparotomic	Laser knife	36	IVF-ET	28	Singleton	Hysterectomy	6,130	1,274	Live	Live
Ukita et al., 2011 (52)	39	Laparotomic	NR	60	Spontaneous	29	Singleton	Hysterectomy	3,943ª	1,614	Death	Live
Yazawa et al., 2011 (53)	37	Laparoscopic	NR	5	IVF-ET	33	Singleton	Preservation ^b	NR	1,956	Live	Live
Onishi et al., 2011 (54)	40	Laparotomic	NR	NR	IVF-ET	31	Singleton	Hysterectomy	5,200	1,700	Live	Live
Kishi et al., 2014 (14)	NR	Laparoscopic	Laser knife	NR	NR	NR	NR	NR	NR	NR	NR	NR
Tanaka et al., 2014 (36)	33	Laparo. assist. adeno.	Monopolar	36	IVF-ET	34	Singleton	Preservation	1,900	2,100	Live	Live
Kodama et al., 2015 (30)	41	Laparoscopic	Monopolar	4	Spontaneous	34	Singleton	Hysterectomy	5,150	2,032	Live	Live
Sato et al., 2015 (55)	35	Laparoscopic	NR	3	IVF-ET	28	Singleton	Preservation	NR	1,484	NR	Live
Nagao et al., 2016 (56)	42	Laparoscopic	NR	12	Spontaneous	35	Singleton	Preservation	NR	2,283	Live	Live
Nishida et al., 2016 (29)	38	Laparotomic	High-frequency	16	IVF-ET	31	Singleton	Hysterectomy	NR	NR	NR	Live
Nishida et al., 2017 (29)	35	Laparotomic	High-frequency	1	Spontaneous	27	Singleton	Preservation	NR	1,106	Live	Live
Nishida et al., 2018 (29)	31	Laparotomic	High-frequency	6	IVF-ET	30	Singleton	Preservation	NR	1,373	Live	Live
Nishida et al., 2019 (29)	34	Laparotomic	High-frequency	NR	Spontaneous	16	Singleton	Preservation	NR	NR	NR	Live
Nishida et al., 2020 (29)	32	Laparotomic	High-frequency	24	IVF-ET	19	Singleton	Preservation	NR	NR	NR	Live
Iwahashi et al., 2017 (57)	37	Laparotomic	High-frequency	72	IVF-ET	22	Singleton	Preservation	2140	NR	Death	Live
Yamaguchi et al., 2017 (58)	38	Laparotomic	NR	36	IVF-ET	33	Singleton	Preservation	759 ^a	1,850	Live	Live
Wood et al., 1998 (59)	NR	Laparoscopic	Monopolar	24	NR	12	Singleton	NR	NR	NR	Death	Live
Saremi et al., 2014 (27)	NR	Laparotomic	Scalpel, monopolar	NR	NR	NR	Singleton	NR	NR	NR	NR	NR
Saremi et al., 2015 (27)	NR	Laparotomic	Scalpel, monopolar	NR	NR	NR	Singleton	NR	NR	NR	NR	NR


Note: High-frequency = high-frequency cutter; IVF-ET = in vitro fertilization-embryo transfer; Laparo. assist. adeno. = laparoscopy-assisted adenomyomectomy; Laparoscopic = laparoscopic surgery; Laparotomic = laparotomic surgery; Monopolar = monopolar cautery; NR = no record.

Osada. Uterine adenomyosis and adenomyoma. Fertil Steril 2018.

a Includes amniotic fluid.

b Adenomatoid tumor

FUTURE THERAPIES FOR ADENOMYOSIS

Oxytocin
Receptor
Overexpressed
In Adenomyotic
Uteri

Clinical Trials.gov

Find Studies ▼ About Studies ▼ Submit Studies ▼ Resources ▼ About Site ▼

Home >

Study Record Detail

☐ Save this study

Saved Studies (0)

Placebo-controlled Proof of Concept Study of Epelsiban in Women With Adenomyosis

This study has been withdrawn prior to enrollment.

(Study was prematurely discontinued due to GSK's change in prioritization for the portfolio and is not due to any safety concerns or regulatory interaction.)

Sponsor:

GlaxoSmithKline

ClinicalTrials.gov Identifier:

NCT02794467

First Posted: June 9, 2016

Last Update Posted: January 18, 2017

Epelsiban- selective oxytocin receptor antagonist

REST/NRSF, miRNAs, and tissue remodeling in adenomyosis pathophysiology

Project Number 1R01HD105714-01

Contact PI/Project Leader NOTHNICK, WARREN B

Awardee Organization
UNIVERSITY OF KANSAS MEDICAL
CENTER

Description

Abstract Text

Project Summary Adenomyosis is a nonmalignant uterine disease characterized by endometrial stroma and glands found within the myometrium. Adenomyosis has been associated with heavy and painful menstrual periods, pelvic pain, pain with intercourse, and reproductive dysfunction. However, now that imaging is identifying adenomyosis in younger and more varied women than those electing hysterectomy where pathological diagnosis occurred, many of our assumptions about the clinical disease are changing. Additionally, the only widely accepted and effective treatments for adenomyosis, hysterectomy and hormonal suppression, are unacceptable for this wider group of women. Much of our uncertainty on diagnosis and treatment for adenomyosis stem from our uncertainty on its' pathogenesis. The most common theory of adenomyosis development centers on the involvement of tissue injury and repair mechanisms with resulting adenomyosis development from invagination of the endometrial basalis into the myometrium (the invasion/invagination theory). While